The refracting angle of a prism is A, and refractive
index of the material of the prism is cot (A/2). The
angle of minimum deviation is:
(A) 180° - 2A
(B) 90° - A
(C) 180° + 2A
(D) 180° - 3A
unnessary answers ate reported
only I need correct answer with explanation ✌
Answers
Answered by
19
μ=(sin(A+D)/2)÷sinA/2=cotA/2
sin(A+D)/2=cosA/2
(A+D)/2=3.14/2-A/2
D=180-2A
option is (A)
sakethprodduturi:
hi
Answered by
4
↧↧↧↧↧↧↧↧↧↧↧↧↧↧↧↧
The formula for refractive index of the materaial of a prism is:
n=[sin(A+dm)/2]/sin(A/2)………………….(1)
dm=angle of minimum deviation.
Now, n=cot(A/2)=cos(A/2)/sin(A/2). Using this fact in eq.(1),
cos(A/2)=sin[(A+dm)/2],
Cos (A/2) = Sin( 90° - A/2)
sin(90° - A/2)=sin(A/2+dm/2)
Therefore,
90° - A/2= ( A + dm)/2= A/2 + dm/2,
==> 90° - A= dm/2,
==> dm = 180° - 2 A.
.☆★☆★☆★☆★☆★
ɧԾρe ɿԵ ɧeʅρՏ
ՎԾՄ
☆★☆★☆★☆★☆★
Similar questions