Math, asked by nithyashree29, 1 month ago

The regression equation of y on x is 4y = 9x + 15
The regression equation of x on y is 25x = 6y + 7
Find the mean values of x, y and r.​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given regression lines are

The regression equation of y on x is 4y = 9x + 15

The regression equation of x on y is 25x = 6y + 7

The above lines can be rewritten as

The line y on x is 9x - 4y = - 15

The line x on y is 25x - 6y = 7

Calculation of mean value of x and y

We know,

  • The point of intersection of regression line gives the mean .

So, let we solve these two linear equations using Cross Multiplication method.

We have equations

\rm :\longmapsto\:9x - 4y =  - 15 -  -  - (1)

and

\rm :\longmapsto\:25x - 6y = 7 -  -  - (2)

Using Cross Multiplication method, we have

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf 2 & \bf 3 & \bf 1& \bf 2\\ \frac{\qquad}{} & \frac{\qquad}{}\frac{\qquad}{} &\frac{\qquad}{} & \frac{\qquad}{} &\\ \sf  - 4 & \sf  - 15 & \sf 9 & \sf  - 4\\ \\ \sf  - 6 & \sf 7 & \sf 25 & \sf  - 6\\ \end{array}} \\ \end{gathered}

So,

\rm :\longmapsto\:\dfrac{x}{ - 28 - 90}  = \dfrac{y}{ - 375 - 63}  = \dfrac{ - 1}{ - 54 + 100}

\rm :\longmapsto\:\dfrac{x}{ - 118}  = \dfrac{y}{ -438}  = \dfrac{ - 1}{ 46}

On Multiply by - 2, we get

\rm :\longmapsto\:\dfrac{x}{59}  = \dfrac{y}{219}  = \dfrac{1}{23}

\bf\implies \:x = \dfrac{59}{23}  \:  \: and \:  \: y = \dfrac{219}{23}

Hence, Mean is given by

\bf\implies \: \bar{x} = \dfrac{59}{23}  \:  \: and \:  \: \bar{ y} = \dfrac{219}{23}

Calculation of Correlation coefficient

We have

Regression equation of y on x is

\rm :\longmapsto\:9x - 4y =  - 15

So, regression coefficient of y on x is

\rm :\longmapsto\:b_{yx} =  -  \: \dfrac{coefficient \: of \: x}{coefficient \: of \: y}

\rm :\longmapsto\:b_{yx} =  -  \dfrac{9}{( - 4)}

\rm :\longmapsto\:b_{yx} =  \: \dfrac{9}{4}

Regression line of x on y is

\rm :\longmapsto\:25x - 6y = 7

\rm :\longmapsto\:b_{xy} =  -  \: \dfrac{coefficient \: of \: y}{coefficient \: of \: x}

\rm :\longmapsto\:b_{xy} =  -  \:  \dfrac{( - 6)}{25}

\rm :\longmapsto\:b_{xy} = \:  \dfrac{6}{25}

Now, we know that

Correlation Coefficient r, is evaluated as

\rm :\longmapsto\:r =  \pm \:  \sqrt{b_{yx} \times b_{xy}}

\rm :\longmapsto\:r =  \pm \:  \sqrt{\dfrac{9}{4}  \times \dfrac{6}{25} }

\rm :\longmapsto\:r =  \pm \:  \dfrac{3}{10} \sqrt{6 }

As sign of regression coefficient is + ve, so r is + ve

\rm :\longmapsto\:r =  \: \dfrac{3}{10} \sqrt{6 }

\bf\implies \:r = 0.7348

Similar questions