Math, asked by gauthamnayak4643, 1 year ago

The relation S is defined on R as follows : S={(a,b)| a ≤ b²,a,b ∈ R} Prove S is not reflexive, not symmetric and not transitive.

Answers

Answered by rishu6845
0

Answer:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by babundrachoubay123
0

Answer:

S is not reflexive, not symmetric and not transitive.

Step-by-step explanation:

According to this question

Given that

S is defined on R

S={(a,b)| a ≤ b²,a,b ∈ R}

So, Reflective ⇒ \frac{1}{2} ∈ R

                           \frac{1}{2}(\frac{1}{2})^2

                           \frac{1}{2}\frac{1}{4}

So, ( \frac{1}{2},  \frac{1}{2}) ∉ S

Then S is not reflective.

Symmetric ⇒ (1, 2) ∈ S = 1 ≤ 2^2

                                     = 1 ≤ 4

                                      = 4 ≥ 1

                                      = (2, 1) ∉ S

So, S is not symmetric.

Transitive ⇒ (3, 2)(2, {3}{2}) ∈ S

3 ≤ 2^2 and 2 ≤ (\frac{3}{2})^2

But (3, {3}{2}) ∉ S

Because, 3 ≥ (\frac{3}{2})^2

                3 ≥ 2.25

So, S is not transitive.

Similar questions