Physics, asked by poojayadav134pd87o4, 1 year ago

The relativistic mass of a proton moving with speed of 2.4×10~8 m/s (rest mass of proton=1.61×10~-27kg and c= 3×10~8m/s) is?

Answers

Answered by Pitymys
20

The relativistic mass of a body of rest mass  m_0 is

 m=\frac{m_0}{\sqrt{1-\frac{v^2}{c^2}}}    , where  v is the speed of the body and  c is the speed of light.

For a proton,  m_0=1.61*10^{-27}\; kg, c=3*10^8\;m/s,v=2.4*10^8\;m/s .

Substituting numerical values,

 m=\frac{1.61*10^{-27}}{\sqrt{1-\frac{(2.4*10^8)^2}{(3*10^8)^2}}} \\<br />m=2.683*10^{-27}\;kg

Answered by SerenaBochenek
8

As per Einstein's theory of relativity, the mass of a body increases when its speed is comparable to the velocity of light.

Let us consider the rest mass of a body is m_{0}

The mass of the body when it will move with a velocity v is -

                                           m\ =\frac{m_{0}} {\sqrt{1-\frac{v^2}{c^2} }}

Here, c is the velocity of light and its value is  3*10^8\ m/s

As per the question, we have proton.

The rest mass of proton is  1.61*10^-27\ kg

The velocity of proton  v=\ 2.4*10^{8}\ m/s

Hence, the relativistic mass of a proton -

                                         m\ =\frac{1.61*10^-27\ kg}{\sqrt{1-\frac{[2.4*10^8]^2}{[3*10^8]^2}}}

                                                =\frac{1.61*10^-27\ kg}{\sqrt{1-0.64}}

                                                =\frac{1.61*10^-27\ kg}{\sqrt{0.36}}

                                                =\frac{1.61*10^-27\ kg}{0.6}

                                                = 2.68*10^-27\ kg   [ans]

Similar questions