Math, asked by Anonymous, 10 months ago

The remainder when 31^150 is divided by 1024 is. (a)320
(b)704
(c)703
(d)321​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\text{Number is $31^{150}$}

\textbf{To find:}

\text{The remainder when $31^{150}$ is divided by 1024}

\textbf{Solution:}

\text{Consider,}

31^{150}

=(32-1)^{150}

\text{Expanding by using binomial theorem}

={150}_C_0\,(-1)^0(32)^{150}+{150}_C_1\,(-1)^1(32)^{149}+{150}_C_2\,(-1)^2(32)^{148}+................+{150}_C_{148}\,(-1)^{148}(32)^2+{150}_C_{149}\,(-1)^{149}(32)^1+{150}_C_{150}\,(-1)^{150}(32)^0

={150}_C_0\,(32)^{150}-{150}_C_1\,(32)^{149}+{150}_C_2\,(32)^{148}+................+{150}_C_{148}\,(32)^2-{150}_C_{149}\,(32)^1+{150}_C_{150}

\text{Using,}

\bf\,n_C_r=n_C_{n-r}

\bf\,n_C_1=n

\bf\,n_C_n=1

=[{150}_C_0\,(32)^{148}(32)^2-{150}_C_1\,(32)^{147}(32)^2+{150}_C_2\,(32)^{146}(32)^2+................+{150}_C_{148}\,(32)^2]-{150}_C_1\,(32)^1+1

=[{150}_C_0\,(32)^{148}(1024)-{150}_C_1\,(32)^{147}(1024)^+{150}_C_2\,(32)^{146}(1024)+................+{150}_C_{148}\,(1024)]-(150{\times}32)+1

=[\textbf{a positive multiple of 1024}]-4800+1

=[k{\times}1024]-4799

\text{It is clear that $k{\times}1024$ is a multiple of 1024 greater than 5120}

\text{We have}

=[l{\times}1024+5120]-4799

=l{\times}1024+(5120-4799)

=l{\times}1024+321

\implies\,31^{150}=l{\times}1024+321

\therefore\textbf{The remainder when $31^{150}$ is divided by 1024 is 321}

\textbf{Answer:}

\textbf{Option (d) is correct}

Similar questions