The remainder when 4x^3- 3x^2+2=0 divided by (x-2) is...
Answers
Correct Question:
Find the remainder when the polynomial 4x³ - 3x² + 2 is divided by (x - 2) is...
_________________________________
Answer:
- Remainder is 22.
Solution:
Method (1) :
Long division method.
x - 2 ) 4x³ - 3x² + 2 ) 4x² + 5x + 10x
⠀⠀⠀⠀4x³ - 8x²
⠀⠀⠀___________
⠀⠀⠀⠀⠀⠀⠀5x² + 2
⠀⠀⠀⠀⠀⠀⠀5x² - 10x
⠀⠀⠀________________
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀10x + 2
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀10x - 20
⠀⠀⠀___________________
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀22
Remainder = 22
Verification:
Dividend = Quotient × Divisor + Remainder
R.H.S. = (4x² + 5x + 10) (x - 2) + 22
⠀⠀⠀⠀= 4x³ + 5x² + 10x - 8x² - 10x - 20 + 22
⠀⠀⠀⠀= 4x³ - 3x² + 2
⠀⠀⠀⠀= L.H.S.
Hence, verified.
__________________________________
Method (2) :
Remainder theorem.
If p (x) = 4x³ - 3x² + 2 divided by f (x) = x - 2, and f (x) is in the form of then remainder can be given by p
.
Here, comparing x - 2 with x -
we get = 2
Remainder = f (2)
⠀⠀⠀⠀⠀⠀⠀= 4(2)³ - 3(2)² + 2
⠀⠀⠀⠀⠀⠀⠀= 4(8) - 3(4) + 2
⠀⠀⠀⠀⠀⠀⠀= 32 - 12 + 2
⠀⠀⠀⠀⠀⠀⠀= 22
Therefore, remainder is 22.