Math, asked by akshaysj2007, 12 hours ago

the remainder when the polynomial f(x)=x^3+x^2 is divided by x+1 is equal to​

Answers

Answered by zaidbinahmad0710
0

(x^3+x^2) / (x +1) = x^2

quotient = x^2

remainder =0

Attachments:
Answered by ChikkukiAshee
1

Answer:

 \large{ \sf{ \underline{ \underline{❥Question}}}}

The remainder when the polynomial \sf \: f(x)=x ^{3} +x^2 is divided by \sf \: x + 1 is equal to

\large{ \sf{ \underline{ \underline{❥Answer}}}}

 \large{ \sf{ \underline{{To \:  find :}}}}

The value of remainder when the polynomial \sf \: f(x)=x ^{3} +x^2 is divided by \sf \: x + 1.

  \large{ \sf{ \underline{Theorem  \: used :}}}

Remainder Theorem :

Let p(x) be any polynomial of degree greater than or equal to one and let a any real number. If p(x) is divided by the linear polynomial x - a, then the remainder is p(a).

 \large{ \sf{ \underline{Solⁿ :}}}

Zero of x + 1

 \large \sf⟹x + 1 = 0

 \large \sf⟹x =  - 1

Now, using Remainder theorem

 \sf \: p(x) = x {}^{3}   +  {x}^{2}

 \sf∴p( - 1) = ( - 1) {}^{3}  +  {( - 1)}^{2}

 \sf \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  - 1 + 1

\sf \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =0

Hence, 0 is the remainder when the polynomial \sf \: f(x)=x ^{3} +x^2 is divided by \sf \: x + 1.

 \sf \large{Hope \:  it  \: helps...}

 \huge{ \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}

Similar questions