Math, asked by manushrilead, 15 days ago

The remainder when x^3 + 3px + q is divided by (x-a)^2, is
The answer is 3 (p + a^2)x + q - 2a^3. Please explain it with steps.

Answers

Answered by mamathamudhiraj012
3

Step-by-step explanation:

= (x-a)^2

= x^2 - 2ax + a^2

Attachments:
Answered by manasagrawal9839
0

Answer:

Step-by-step explanation:

To find the remainder when \(x^3 + 3px + q\) is divided by \((x - a)^2\), we can use polynomial long division.

Let's perform the polynomial long division:

```

           x

____________________________

(x - a)^2 | x^3 + 3px + q

           - (x^3 - 2ax^2)

           __________________

                   2ax^2 + 3px

                   - (2ax^2 - 2a^2x)

                   _______________

                            5a^2x + q

                            - (5a^2x - 5aq)

                            _______________

                                     5aq + q

```

After the long division, we have a remainder of \(5aq + q\).

Hence, the correct answer is (d) none of these.

Similar questions