Math, asked by harithachalamalasett, 2 months ago

the remainders are in proportion!
If (x - 2), (x + 2), (2x + 1) and (2x + 19) are in proportion, find the
value of x

Answers

Answered by AtikRehan786
1

Answer:

The answer is 4.

Step-by-step explanation:

HOPE THIS WILL BE HELPFUL.❤❤❤❤❤❤

Attachments:
Answered by ImperialGladiator
3

Answer:

 \rm \: x = 4

Explanation:

Given that,

 \rm \: (x - 2)(x + 2)(2x + 1)(2x + 19) \: are \: in \: proportion \:

We need to find the value of x

Doing a proportional analysis : -

 \rm \: (x - 2) : (x + 2) : : (2x + 1) : (2x + 19)

On solving further,

 \rm \implies \:  \dfrac{(x - 2)}{(x + 2)}  =  \dfrac{(2x + 1)}{(2x + 19)}

 \rm \implies \:(x - 2)(2x + 19) = (2x + 1)(x + 2)

 \rm \implies \:2 {x}^{2}  - 4x + 19x - 38 =  {2x}^{2}  + x + 4x + 2

 \rm \implies \:2 {x}^{2} +   15x - 38 =  {2x}^{2}  + 5x + 2

 \rm \implies \: 15x - 38 =5x + 2

 \rm \implies \: 15x - 5x =38 + 2

 \rm \implies \: 10x =40

 \rm \implies \: x = \dfrac{40}{10}

 \rm \implies \: x =4

The value of x is 4

_____________________

Verification:

 \rm \implies \:  \dfrac{(x - 2)}{(x + 2)}  =  \dfrac{(2x + 1)}{(2x + 19)}  \\

\rm \: substitute \: x = 4 \\

\rm \implies \:  \dfrac{4 - 2}{4 + 2}  =  \dfrac{2(4) + 1}{2(4) + 19}  \\

\rm \implies \:   \dfrac{2}{6}  =  \dfrac{8 + 1}{8 + 19}  \\

\rm \implies \:   \dfrac{1}{3}  =  \dfrac{9}{27}  \\

\rm \implies \:   \dfrac{1}{3}  =  \dfrac{1}{3}

L. H. S. = R. H. S.

Hence, verified !!

Similar questions