the requisite energy is derived
Answers
Explanation:
Work, Energy and Power: Problem Set Overview
This set of 32 problems targets your ability to use equations related to work and power, to calculate the kinetic, potential and total mechanical energy, and to use the work-energy relationship in order to determine the final speed, stopping distance or final height of an object. The more difficult problems are color-coded as blue problems.
Work
Work results when a force acts upon an object to cause a displacement (or a motion) or, in some instances, to hinder a motion. Three variables are of importance in this definition - force, displacement, and the extent to which the force causes or hinders the displacement. Each of these three variables find their way into the equation for work. That equation is:
Work = Force • Displacement • Cosine(theta)
W = F • d • cos(theta)
Since the standard metric unit of force is the Newton and the standard meteric unit of displacement is the meter, then the standard metric unit of work is a Newton•meter, defined as a Joule and abbreviated with a J.
The most complicated part of the work equation and work calculations is the meaning of the angle theta in the above equation. The angle is not just any stated angle in the problem; it is the angle between the F and the d vectors. In solving work problems, one must always be aware of this definition - theta is the angle between the force and the displacement which it causes. If the force is in the same direction as the displacement, then the angle is 0 degrees. If the force is in the opposite direction as the displacement, then the angle is 180 degrees. If the force is up and the displacement is to the right, then the angle is 90 degrees. This is summarized in the graphic below
hope you like it and helpful also
Answer: