Physics, asked by snigdhahazra11022004, 3 days ago

The resistance at ice point is 5 Ohms and at steam point is 5.23 Ohms. What will be the resistance at 345.65֠C (a) 5.795 Ohms (b) 5.895 Ohms (c) 5.980 Ohms (d) 5.765 Ohms

Answers

Answered by nileshmahamuni8855
0

Answer:

Answer:

The new mean of new observations is

\displaystyle{\boxed{\red{\sf\:\dfrac{m\:+\:xy}{x}\:}}}

x

m+xy

Step-by-step-explanation:

Let the number of observations be n.

And the observations be a₁, a₂, a₃, a₄,....,aₙ

We have given that,

The mean of certain number of observations is m.

We know that,

\displaystyle{\boxed{\pink{\sf\:Mean\:=\:\dfrac{Sum\:of\:observations}{No.\:of\:observations}}}}

Mean=

No.ofobservations

Sumofobservations

\displaystyle{\implies\sf\:m\:=\:\dfrac{a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n}{n}}⟹m=

n

a

1

+a

2

+a

3

+a

4

+⋯+a

n

From the given condition,

Each observation is divided by x ( x ≠ 0 ) and increased by y.

\displaystyle{\therefore\:\sf\:New\:observations\:=\:\dfrac{a_1}{x}\:+\:y\:,\:\dfrac{a_2}{x}\:+\:y\:,\:\dfrac{a_3}{x}\:+\:y\:,\:\cdots\:,\:\dfrac{a_n}{x}\:+\:y}∴Newobservations=

x

a

1

+y,

x

a

2

+y,

x

a

3

+y,⋯,

x

a

n

+y

We have to find the new mean of new observations.

\displaystyle{\boxed{\blue{\:\sf\:New\:mean\:=\:\dfrac{Sum\:of\:new\:observations}{No.\:of\:observations\:}}}}

Newmean=

No.ofobservations

Sumofnewobservations

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{\dfrac{a_1}{x}\:+\:y\:+\:\dfrac{a_2}{x}\:+\:y\:+\:\dfrac{a_3}{x}\:+\:y\:+\:\dfrac{a_4}{x}\:+\:y\:+\:\cdots\:+\:\dfrac{a_n}{x}\:+\:y}{n}}⟹Newmean=

n

x

a

1

+y+

x

a

2

+y+

x

a

3

+y+

x

a

4

+y+⋯+

x

a

n

+y

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{\dfrac{1}{x}\:(\:a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n\:)\:+\:n\:y}{n}}⟹Newmean=

n

x

1

(a

1

+a

2

+a

3

+a

4

+⋯+a

n

)+ny

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n}{x\:n}\:+\:\dfrac{\cancel{n}\:y}{\cancel{n}}}⟹Newmean=

xn

a

1

+a

2

+a

3

+a

4

+⋯+a

n

+

n

n

y

\displaystyle{\implies\sf\:New\:mean\:=\:\underbrace{\pink{\sf\:\dfrac{a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n}{n}}}_{m}\:\times\:\dfrac{1}{x}\:+\:y}⟹Newmean=

m

n

a

1

+a

2

+a

3

+a

4

+⋯+a

n

×

x

1

+y

\displaystyle{\implies\sf\:New\:mean\:=\:m\:\times\:\dfrac{1}{x}\:+\:y}⟹Newmean=m×

x

1

+y

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{m}{x}\:+\:y}⟹Newmean=

x

m

+y

\displaystyle{\implies\:\underline{\boxed{\red{\sf\:New\:mean\:=\:\dfrac{m\:+\:xy}{x}\:}}}}⟹

Newmean=

x

m+xy

∴ The new mean of new observations is

\displaystyle{\boxed{\red{\sf\:\dfrac{m\:+\:xy}{x}\:}}}

x

m+xy

Answer:

The new mean of new observations is

\displaystyle{\boxed{\red{\sf\:\dfrac{m\:+\:xy}{x}\:}}}

x

m+xy

Step-by-step-explanation:

Let the number of observations be n.

And the observations be a₁, a₂, a₃, a₄,....,aₙ

We have given that,

The mean of certain number of observations is m.

We know that,

\displaystyle{\boxed{\pink{\sf\:Mean\:=\:\dfrac{Sum\:of\:observations}{No.\:of\:observations}}}}

Mean=

No.ofobservations

Sumofobservations

\displaystyle{\implies\sf\:m\:=\:\dfrac{a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n}{n}}⟹m=

n

a

1

+a

2

+a

3

+a

4

+⋯+a

n

From the given condition,

Each observation is divided by x ( x ≠ 0 ) and increased by y.

\displaystyle{\therefore\:\sf\:New\:observations\:=\:\dfrac{a_1}{x}\:+\:y\:,\:\dfrac{a_2}{x}\:+\:y\:,\:\dfrac{a_3}{x}\:+\:y\:,\:\cdots\:,\:\dfrac{a_n}{x}\:+\:y}∴Newobservations=

x

a

1

+y,

x

a

2

+y,

x

a

3

+y,⋯,

x

a

n

+y

We have to find the new mean of new observations.

\displaystyle{\boxed{\blue{\:\sf\:New\:mean\:=\:\dfrac{Sum\:of\:new\:observations}{No.\:of\:observations\:}}}}

Newmean=

No.ofobservations

Sumofnewobservations

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{\dfrac{a_1}{x}\:+\:y\:+\:\dfrac{a_2}{x}\:+\:y\:+\:\dfrac{a_3}{x}\:+\:y\:+\:\dfrac{a_4}{x}\:+\:y\:+\:\cdots\:+\:\dfrac{a_n}{x}\:+\:y}{n}}⟹Newmean=

n

x

a

1

+y+

x

a

2

+y+

x

a

3

+y+

x

a

4

+y+⋯+

x

a

n

+y

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{\dfrac{1}{x}\:(\:a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n\:)\:+\:n\:y}{n}}⟹Newmean=

n

x

1

(a

1

+a

2

+a

3

+a

4

+⋯+a

n

)+ny

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n}{x\:n}\:+\:\dfrac{\cancel{n}\:y}{\cancel{n}}}⟹Newmean=

xn

a

1

+a

2

+a

3

+a

4

+⋯+a

n

+

n

n

y

\displaystyle{\implies\sf\:New\:mean\:=\:\underbrace{\pink{\sf\:\dfrac{a_1\:+\:a_2\:+\:a_3\:+\:a_4\:+\:\cdots\:+\:a_n}{n}}}_{m}\:\times\:\dfrac{1}{x}\:+\:y}⟹Newmean=

m

n

a

1

+a

2

+a

3

+a

4

+⋯+a

n

×

x

1

+y

\displaystyle{\implies\sf\:New\:mean\:=\:m\:\times\:\dfrac{1}{x}\:+\:y}⟹Newmean=m×

x

1

+y

\displaystyle{\implies\sf\:New\:mean\:=\:\dfrac{m}{x}\:+\:y}⟹Newmean=

x

m

+y

\displaystyle{\implies\:\underline{\boxed{\red{\sf\:New\:mean\:=\:\dfrac{m\:+\:xy}{x}\:}}}}⟹

Newmean=

x

m+xy

∴ The new mean of new observations is

\displaystyle{\boxed{\red{\sf\:\dfrac{m\:+\:xy}{x}\:}}}

x

m+xy

Similar questions