Physics, asked by agarwalpurvi1399, 8 months ago

The resistance of a wire of 80cm and of uniform area of cross section 0.025square is found to be 1.50 ohm .calculate resistivity of the wire

Answers

Answered by Anonymous
14

Answer:

The resistivity of the wire is 4.687 × 10^-4 Ωm.

Explanation:

Given :-

  • The resistance of a wire of 80 cm and of uniform area of cross section 0.025 cm² is found to be 1.50 Ω.

To find :-

  • Resistivity of the wire.

Solution :-

Formula used :

{\boxed{\sf{R=\dfrac{\rho\:l}{A}}}}

  • Terms identification :
  • R = Resistance
  • \rho=Resistivity
  • l = Length
  • A = cross section area

Given :-

• R = 1.50 Ω

• L = 80 cm

• A = 0.025 cm²

\mapsto\sf{R=\dfrac{\rho\:l}{A}}

\mapsto\sf{1.50=\dfrac{\rho\:\times\:80}{0.025}}

\mapsto\sf{80\rho=1.50\times\:0.025}

\mapsto\sf{80\rho=0.0375}

\mapsto\sf{\rho=\dfrac{0.0375}{80}}

\mapsto\sf{\rho=4.687\times\:10^{-4}}

Therefore the resistivity of the wire is 4.687 × 10^-4 Ωm.

Answered by Anonymous
166

AnsWer :

\tt {\pink{We \:have}}\begin{cases} \sf{\green{Resistance  \: (R)=1.50 \:\Omega}}\\ \sf{\blue{Area\:of\:cross\: section \: (A)=0.025\:cm^2}}\\ \sf{\orange{Length \:  of \:  the wire \: (l)=80\:cm}}\\ \sf{\red{Resistivity \: ( \rho)=?}}\end{cases}

: \implies\sf R = \dfrac{\rho \:  l}{A} \\  \\  \\

: \implies\sf  \rho = \dfrac{ A R }{l} \\  \\  \\

: \implies\sf  \rho = \dfrac{0.025 \times 1.50 }{80} \\  \\  \\

: \implies\sf  \rho = \dfrac{0.0375}{80} \\  \\  \\

: \implies \underline{ \boxed{\sf  \rho =4.687 \times  {10}^{ - 4}  \:  \Omega \: m}} \\  \\

\therefore\underline{\textsf { Resistivity of the wire is  \textbf{4.687$\times$10$^{-4}$ $\Omega$ m}}}. \\

Similar questions