Physics, asked by ruved1002, 1 month ago

the resistance of a wire of radius 0.01mm is 10 ohm if the resistivity of the material is 5×10^-7 ohm meter find the length of the wire​

Answers

Answered by TrustedAnswerer19
4

Answer:

Given,

resistance R = 10 ohm

resistivity  \rho =  5\:\times\: 10^{-7}\:\:ohm \:\:m

 \sf \: radius \:  \: r = 0.01 \:  \: mm \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 0.01 \times  {10}^{ - 3}  \:  \: m \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 1 \times  {10}^{ - 5}  \:  \: m \\  \sf \: area \:  \: A = \pi {r}^{2}  \\  \:  \:  \:  \:  \:  = 3.1416 \times ( {1 \times  {10}^{ - 5} })^{2}  \\  \:  \:  \:  \:  \:  \:  \:  \:  = 3.1416 \times  {10}^{ - 10}  \:  \:  \:  {m}^{2}

length l = to find

we know that,

 \sf \: R \:=\:\frac{ \rho\:l}{A} \:  \\  \sf \implies \:  \: l \:  =  \frac{RA}{ \rho}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  =  \frac{10 \times 3.1416 \times  {10}^{ - 10} }{5 \times  {10}^{ - 7} }  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: = 6.2832 \times  {10}^{ - 3}  \:  \: m \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: = 6.2832 \:  \: mm

Similar questions