Physics, asked by karankumar12386, 3 months ago

The resistance of the wire of length 10m is 2ohm. If the area of cross section of the wire is 2 x 10 ^-7 m^2 , determine its
(I) Resistivity
(II) Conductance
(III) Conductivity

Answers

Answered by Seafairy
107

Given :

\text{Length, L = 10\:m}

\text{Resistance, R = 2\:ohm}

\text{Area, A = }2\times 10^{-7}m^2

To Find :

(I)\text{Resistivity}

(II)\text{Conductance}

(III)\text{Conductivity}

Formula Applied :

\text{Resistivity},  \rho = \frac{RA}{L}

\text{Conductance}, G = \frac{1}{R}

\text{Conductivity}, \sigma = \frac {1}{p}

Solution :

(I) Resistivity :

\text{Resistivity}= \frac{Resistance\: \times\: Area }{Length}

\rho = \frac{2 \times 2 \times 10^{-7}}{10}

\implies \frac{4 \times 10 ^{-8}}{10}

\boxed {\text{Resistivity = }4 \times 10 ^{-8}\Omega m}

(II) Conductance :

\text{Conductance = } \frac{1}{\text{Resistance}}

G = \frac{1}{R}

\implies \frac{1}{2}

\boxed{\text{Conductance = } 0.5 \: \text{mho}}

(III) Conductivity :

\text{Conductance = } \frac{1}{Resistivity}

\sigma = \frac{1}{\rho}

\implies \frac{1}{4 \times 10^{-8}}

\boxed{\text{Conductivity = }0.25 \times 10^{-8}\:\text{mho}\:m^{-1}}

Similar questions