Physics, asked by saikish269, 11 months ago

The respective speeds of molecules are 2, 4, 6, 8 km/s. The ratio of their rms velocity and average velocity will be

Answers

Answered by BrainlyRonaldo
4

\bigstar Answer \bigstar\\

⇒ Speeds of molecules are 2, 4, 6, 8 km/s

Where,

\rm v_1 = 2\;km/s\\v_2 = 4\;km/s\\v_3 = 6\;km/s\\v_4 = 8\;km/s

Average velocity of the molecules (\rm v_a_v)

\implies \rm \dfrac{v_1+v_2+v_3+v_4}{4}

\implies \rm \dfrac{2+4+6+8}{4}

\implies \rm \dfrac{20}{4}

\implies \rm  5

\orange{\boxed{\rm v_a_v = 5 \;km/s}}

Root mean square velocity of the molecules (\rm v_r_m_s)

\implies \rm \sqrt{\dfrac{(v_1)^2+(v_2)^2+(v_3)^2+(v_4)^2}{4} }

\implies \rm \sqrt{\dfrac{(2)^2+(4)^2+(6)^2+(8)^2}{4} }

\implies \rm \sqrt{\dfrac{4+16+36+64}{4} }

\implies \rm \sqrt{\dfrac{120}{4} }

\implies \rm \sqrt{30}

\implies \rm 5.47

\blue{\boxed{\rm v_r_m_s = 5.47\;km/s}}

Hence,

The ratio of their rms velocity (\rm v_r_m_s) and average velocity(\rm v_a_v) is

\implies \rm \dfrac{v_r_m_s}{v_a_v} = \dfrac{5.47}{5}

The ratio will be,

\implies {\green{\boxed{\rm 5.47\;:\;5}}

Similar questions