Math, asked by nitish60397, 10 months ago

the result of dividing a number of two digit by the number with the digit reversed is5/6.if the difference of digit is 1,find the no.​

Answers

Answered by Anonymous
4

Answer :

Let the two digit number be 10x + y.

Then, the number formed by reversing the digits will be 10y + x.

According to the question,

 \frac{10x + y}{10y + x}  =  \frac{5}{6}  \\

Thus,

→6(10x + y) = 5(10y + x) \\  \\ →60x + 6y = 50y + 5x \\\\→ 60x - 5x =50y - 6y \\ \\ →55x = 44y \\  \\→ x =  \frac{4y}{5} .................eq1

And,

Difference between the two digits = 1

Hence, x - y = 1 .................... eq2

Now,

Using eq1 in eq2, we get

→x - y = 1 \\\\ →\frac{4y}{5}  - y = 1 \\\\ → \frac{4y - 5y}{5}  = 1 \\\\ → -\frac{y}{1}  = 5\\  \\→ y = -5

Hence, if y = -5 then

x - y = 1

x - (-5) = 1

x = 1 - 5 = -4

Therefore, the two digit number is 10x+y = (-45).

Answered by Anonymous
3

\huge\red{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Number \ is \ -45.}

\huge\sf\purple{Given:}

\sf{The \ result \ of \ dividing \ a \ number}

\sf{of \ two \ digit \ by \ the \ number \ with}

\sf{the \ reversed \ is \ \frac{5}{6}.}

\sf{The \ difference \ between \ the \ digits}

\sf{is \ 1.}

\huge\sf\blue{To \ find:}

\sf{The \ number.}

\huge\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ digit \ in \ the \ ten's \ place \ of }

\sf{number \ be \ x \ and \ in \ units \ place \ be \ y.}

\sf{\therefore{Original \ number=10x+y}}

\sf{Number \ with \ reversed \ digit's=10y+x}

\sf{According \ to \ the \ first \ condition}

\sf{\frac{10x+y}{10y+x}=\frac{5}{6}}

\sf{5(10y+x)=6(10x+y)}

\sf{50y+5x=60x+6y}

\sf{60x-5x+6y-50y=0}

\sf{55x-44y=0}

\sf{11(5x-4y)=0}

\sf{5x-4y=\frac{0}{11}}

\sf{5x-4y=0...(1)}

\sf{According \ to \ the \ second \ condition}

\sf{x-y=1...(2)}

\sf{Multiply \ eq(2) \ 4, \ we \ get}

\sf{4x-4y=4...(3)}

\sf{Subract \ equation \ (3) \ from \ (1)}

\sf{5x-4y=0}

\sf{-}

\sf{4x-4y=4}

_________________

\sf{x=-4}

\sf{Substitute \ x=-5 \ in \ eq(2), \ we \ get}

\sf{-4-y=1}

\sf{-y=1+4}

\sf{-y=5}

\sf{\therefore{y=-5}}

\sf{The \ number=10x+y}

\sf{=10×(-4)+(-5)}

\sf{=-40-5}

\sf{=-45}

\sf\purple{\tt{\therefore{Number \ is \ -45.}}}

Similar questions