Physics, asked by kundankorlapati, 7 months ago

The resultant of two forces at right angle is 5 N. When the angle between them is
120, the resultant is 13 N. Then the forces are

Answers

Answered by Anonymous
23

Answer

The two forces are 17.25 N and -0.25 N

Solution

Given -

\rm \vec R = 5 N when \theta = 90\degree

\rm \vec R = 13 N when \theta = 120\degree

To find -

The forces A and B (let)

Formula used -

\rm R = \sqrt{A^2 + B^2 + 2ABcos\theta}

When the vectors are perpendicular -

\implies\rm \vec R = 5 N

\implies\rm \theta = 90\degree

Substituting the value in formula -

\implies\rm R = \sqrt{A^2 + B^2 + 2ABcos\theta}

\implies\rm 5 = \sqrt{A^2 + B^2 + 2ABcos90}

\implies\rm 5^2 = A^2 + B^2 + 2AB \: \: [cos90\degree = 0]

\implies\rm 5^2 = A^2 + B^2

\implies\rm A^2 + B^2 = 5^2 eq i

When angle between them is 120°

\implies\rm \vec R = 13 N

\implies\rm \theta = 120\degree

Substituting the value in formula -

\implies\rm R = \sqrt{A^2 + B^2 + 2ABcos\theta}

\implies\rm 13 = \sqrt{A^2 + B^2 + 2ABcos120}

\implies\rm 13^2 = A^2 + B^2 + 2AB (\frac{-1}{2})

\implies \rm 169 = A^2 + B^2 - AB eq ii

By substituting the value of \rm A^2 + B^2 from equation i in equation ii -

\implies\rm 169 = A^2 + B^2 - AB

\implies\rm 169 = 25 - AB

\implies\rm AB = -144

\implies\rm A ^2 + B^2 + 2AB = (A + B)^2

\implies\rm 25 - 288 = (A + B)^2

\implies\rm 263 = (A + B)^2

\implies\rm A + B = \sqrt{263} = 17.1

\implies\rm A^2 + B^2 - 2AB = (A - B)^2

\implies\rm 25 - 2 ( - 144 ) = (A - B)^2

\implies\rm (A - B)^2 = 313

\implies\rm A - B = \sqrt{313} = 17.6

\implies\rm A + B = 17.1

\implies\rm A - B = 17.6

Solving the equation -

\rm 2A = 34.7

\implies\rm A = 17.35

\implies\rm B = -0.25

The two forces are 17.25 N and -0.25 N.

Similar questions