Physics, asked by Alison1, 4 months ago

The resultant of two vectors A and B is vector C=2.2i+3.4j. If vector A=1.5i-2.0j, find the magnitude of B and the angle it makes with the positive x-​

Answers

Answered by Mihir1001
6

 \underline{ \bold{question: }}

 \sf{The \:  resultant  \: of \:  two \:  vectors \:  A \:  and  \: B \:  is  \: vector }\\  \sf{  C=2.2 \hat{i}+3.4 \hat{j}. \:  If  \:  vector \: A=1.5 \hat{i}-2.0 \hat{j},  find} \\  \sf{  the  \: magnitude  \: of \:  B \:  and \:  the  \: angle \:  it  \: makes \: with} \\  \sf{   \: the \:  positive \:  x-axis. \qquad \qquad\qquad \qquad \qquad \ \ \ \ \ }

 \underline{ \bold{solution : }}

we have,

 \sf  \vec{A}=1.5 \hat{i}-2.0 \hat{j}

and,

 \sf  \vec{C}=2.2 \hat{i}+3.4 \hat{j}

Thus ,

 \begin{aligned} \sf \vec{B}& = \sf  \vec{C} -  \vec{A} \\  \\ & = (2.2 \hat i + 3.4 \hat j) - (1.5 \hat i - 2.0 \hat{j}) \\  \\ & = (2.2 - 1.5) \hat{i} + (3.4 + 2.0) \hat{j} \\  \\ & = 0.7 \hat{i} + 5.4 \hat{j} \end{aligned}

Thus ,

magnitude of vector B ,

 \begin{aligned} \sf | \vec{B}| & = \sf  \sqrt{ {(0.7)}^{2} +  {(5.4)}^{2}  } \\  \\ & =  \sqrt{0.49 + 29.16 }  \\  \\ & =  \sqrt{29.65}  \\  \\ & = \ \ 5.445 \end{aligned}

Now , let theta  \theta be the angle made by vector B with the x-axis.

Thus ,

 \begin{aligned}  \tan \theta & = \sf  \frac{ \small{vertical \: compoment}}{ \small{horizontal \: component}}  \\  \\ & =  \frac{5.4}{0.7}  \\  \\ &  =  \frac{54}{7} \\  \\ \implies \quad \theta  \ &  =  { \tan}^{ - 1}  \bigg( \frac{54}{7}  \bigg) \end{aligned}

Similar questions