Physics, asked by Gar6g3heavyaja, 1 year ago

The resultant of two vectors A and B perpendicular to the vector A and its magnitude is half of the magnitudeof vector B....find out the angle between A and B???

Answers

Answered by Nami7
59
the angle between A Nd B would be 120 degree
Attachments:
Answered by mindfulmaisel
5

The angle between “A and B” 150°.

Solution:

Formula of “Magnitude of resultant” of ‘A and B’ is,  

R=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}

According to question,  

Magnitude of resultant = Half of magnitude of B.  

Hence, we can say that  

\sqrt{A^{2}+B^{2}+2 A \cdot B \cos \theta}=\frac{B}{2}

Taking square both sides,

A^{2}+B^{2}+2 A . B \cos \theta=\frac{B^{2}}{4}

A^{2}+2 A B \cos \theta+\frac{3 B^{2}}{4}=0 \ldots \ldots \ldots \ldots(1)

A and R is perpendicular upon each other.  Hence, we can say that  

e.g., \mathrm{A}(\mathrm{A}+\mathrm{B})=0

A . A+A . B=0

A^{2}+A . B \cos \theta=0

\cos \theta=-\frac{A}{B}, put it in equation (1)  

A^{2}+2 A . B\left(-\frac{A}{B}\right)+\frac{3 B^{2}}{4}=0

A^{2}-2 A^{2}+\frac{3 B^{2}}{4}=0

A=\frac{\sqrt{3 B}}{2}

Now, \cos \theta=-\frac{A}{B}=-\frac{\sqrt{3 B}}{2 B}=-\frac{\sqrt{3}}{2}

\cos \theta=\cos 150^{\circ}

\bold{\Rightarrow \theta=150^{\circ}}

Similar questions