Business Studies, asked by Sahilsingh708, 1 year ago

The results of a recent poll on the preference of shoppers regarding two products are shown below. Product shoppers surveyed shoppers favoring a 800 560 b 900 612 the point estimate for the difference between the two population proportions is

Answers

Answered by sweety1422548
0
bhzcgvzhvsjwbyzvywgugzyvwygzubwyvzybiz
Answered by DodieZollner
2

Product   Shoppers Surveyed                  This Product


  A     800      560


  B                                 900       612




Let p1 be in proportion preferring product A and p2 be in proportion preferring product B.


Improve  a  90%  confidence  interval  estimate  for  the  alteration


   

p1-p2  


between the proportions favoring each product.



(b) Test H0 : p1 = p2  at ∝ = 0.05 based on classical approach



(c) Test H0 : p1 = p2  at ∝ = 0.05 based on p- value method  

 

[solution:]


  J n1 =800 ,n2 = 900, p1 = 560/800 =0.7, p2 = 612/900 = 0.68




Sp1-p2 = √((p1(1-p1)/n1)+(p2(1-p2)/n2) )   =   √((0.7(1-0.7)/800)+(.68(1-0.68)/900) )




= 02246


.


 

Thus, a 90% confidence interval is  


(p1-p2) ± Zα/2 Sp1-p2 = (0.7-0.68) ±z0.05.0.02246 = 0.02± 0.03695



= [-0.01695,0.5695]



P =(n1p1+n2p2)/(n1+n2) = (560+612)/(800+900 ) = 0689



S*p1-p2 = √(p(1-p)(1/n1+1/n2) )   = √(0.689(1-0.689)(1/800+1/900) )


=  


=0.02249



Therefore,



Z = (p1-p2)/(Sp1-p2) = (0.7-0.68)/0.02249 = 0.89



Z = 0.89<1.96 = Z0.025 =Z∝/2  


We don’t discard  H0



p – value  = P(Z >0.89) = 0.3734>0.05 =>not rejecting H0


Similar questions