Math, asked by awdheshkumar45725, 9 months ago

The right circular cylinder and right circular cone have equal base radius and perpendicular height if the volume of the cylinder is 600 cm 3 find the volume of the cone solve the following question?​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
51

\huge\sf\pink{Answer}

☞ Volume of cone is 200 cm³

━━━━━━━━━━━━━

\huge\sf\blue{Given}

✭ A right circular cylinder and a right circular cone have equal base, height & radius

✭ Volume of cylinder = 600 cm³

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ Volume of the cone?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

So here we shall just take tthe given value and simply substitute in the other formula, that is,

We know that volume of cylinder is given by,

\underline{\boxed{\sf Volume_{cylinder} = \pi r^2 h}}

\sf \red{\pi r^2 h = 600 \ cm^3} \:\:\: -eq(1)

So we also know that the volume of a cone is given by,

\underline{\boxed{\sf Volume_{Cone} = \dfrac{1}{3} \pi r^2 h}}

\bigg\lgroup \sf Sub \ Value \ of \ eq(1)\bigg\rgroup

\sf \dfrac{1}{3}\pi r^2 h

\sf \dfrac{1}{3} \times 600

\sf \orange{Volume_{Cone} = 200 \ cm^3}

\sf \star \: Diagram \: \star

Cylinder

\setlength{\unitlength}{1 cm} \thicklines \begin{picture}(2,0)\qbezier(0,0)(0,0)(0,2.5)\qbezier(2,0)(2,0)(2,2.5)\qbezier(0,0)(1,1)(2,0)\qbezier(0,0)( 1, - 1)(2,0)  \put(2.3,1){\vector(0,1){1.5}}\put(2.3,1){\vector(0, - 1){1.2}}\put(2.3,1){ $\bf h$}\put(0.3,0.1){ $\bf r$}\put(0,0){\vector(1,0){1}}\qbezier(0,2.5)(1,1.5)(2,2.5)\qbezier(0,2.5)(1, 3.5)(2,2.5)\end{picture}

Cone

\setlength{\unitlength}{30} \begin{picture}(20,10)  \linethickness{1.2} \qbezier(1,1)(3., 0)(5,1)\qbezier(1,1)(3.,2)(5,1)\put(3,1){\circle*{0.15}}\put(3,1){\line(0,1){3}}\qbezier(1,1)(1,1)(3,4)\qbezier(5,1)(3,4)(3,4)\put(3,1){\line(1,0){2}}\put(3.2,1.1){$ \sf r  \: cm $}\put(1.9,1.9){$ \sf height $}\end{picture}

━━━━━━━━━━

\sf \large\underline{\sf Know \ More}

»» \sf Volume \ of \ Sphere = \dfrac{4}{3} \pi r^3

»» \sf Volume \ of \ cuboid = lbh

»» \sf Volume \ of \ cube = a^3

»» \sf Volume \ of \ Hemisphere = \dfrac{2}{3} \pi r^3

━━━━━━━━━━━━━━━━━━

Answered by nandanibhavangiri602
2

answer :

its due to their hallow bones

Similar questions