Math, asked by nnmeeravali147852369, 10 months ago

the rms value of y=x^2 in the interval -pi to pi

Answers

Answered by nirman95
5

Given:

A function has been provided as ;

y =  {x}^{2}

To find:

Root Mean Square (RMS) value of y in the interval from -π to +π

Calculation:

 \therefore \:  \: y_{(rms)} =  \sqrt{ \dfrac{  \displaystyle\int_{ - \pi}^{\pi}( {y}^{2}  \: dx)}{  \displaystyle \int_{ - \pi}^{\pi}dx} }

Putting the value of "x" in place of "y" in RHS :

 =  >  \:  \: y_{(rms)} =  \sqrt{ \dfrac{  \displaystyle\int_{ - \pi}^{\pi} \{ {( {x}^{2} )}^{2}  \: dx \}}{  \displaystyle \int_{ - \pi}^{\pi}dx} }

 =  >  \:  \: y_{(rms)} =  \sqrt{ \dfrac{  \displaystyle\int_{ - \pi}^{\pi} ({x}^{4}  \: dx )}{  \displaystyle \int_{ - \pi}^{\pi}dx} }

Following rules of Integration :

 =  >  \:  \: y_{(rms)} =  \sqrt{ \dfrac{ \bigg \{ \dfrac{ {x}^{5} }{5} \bigg \}_{ - \pi}^{\pi} }{\pi - ( - \pi)} }

 =  >  \:  \: y_{(rms)} =  \sqrt{ \dfrac{ \bigg \{ \dfrac{ {x}^{5} }{5} \bigg \}_{ - \pi}^{\pi} }{\pi  + \pi} }

 =  >  \:  \: y_{(rms)} =  \sqrt{ \dfrac{ \bigg \{ \dfrac{ {x}^{5} }{5} \bigg \}_{ - \pi}^{\pi} }{2\pi  } }

 =  >  \:  \: y_{(rms)} =  \sqrt{ \dfrac{ \bigg \{  {x}^{5}  \bigg \}_{ - \pi}^{\pi} }{10\pi  } }

 =  >  \:  \: y_{(rms)} =  \sqrt{ \dfrac{ \bigg \{  {\pi}^{5}  -  {\pi}^{( - 5)}  \bigg \} }{10\pi  } }

 =  >  \:  \: y_{(rms)} =  \sqrt{ \dfrac{ \bigg \{  {\pi}^{5}  -   \dfrac{1}{ {\pi}^{5} } \bigg \} }{10\pi  } }

 =  >  \:  \: y_{(rms)} =  \sqrt{ \dfrac{ \bigg \{     \dfrac{ {\pi}^{10}  - 1}{ {\pi}^{5} } \bigg \} }{10\pi  } }

 =  >  \:  \: y_{(rms)} =  \sqrt{ \dfrac{ {\pi}^{10}  - 1}{10 {\pi}^{6} }  }

 =  >  \:  \: y_{(rms)} =  \dfrac{1}{ {\pi}^{3} } \bigg \{  \sqrt{ \dfrac{ {\pi}^{10}  - 1}{10 }  } \bigg \}

So the final answer is :

 \boxed{ \red{ \bold{ \:  \: y_{(rms)} =  \dfrac{1}{ {\pi}^{3} } \bigg \{  \sqrt{ \dfrac{ {\pi}^{10}  - 1}{10 }  } \bigg \}}}}

Similar questions