the root of quadratic Polynomial (b-c)x2+(c-a)x+(a-b)=0 are real show that b2-4ac=0
pls fast
Answers
Answered by
1
Answer:
0
Step-by-step explanation:
If roots of a quadratic equation are equal, then the discriminant of the quadratic equation is 0.
D=b2−4ac=0
(b−c)x2+(c−a)x+(a−b)=0 ≡ ax2+bx+c=0
Here, a =(b-c) , b = (c-a) and c = (a-b)
So, D = (c−a)2−4(b−c)(a−b)=0
c2+a2−2ac−4(ab−b2−ac+bc)=0
c2+a2−2ac−4ab+4b2+4ac−4bc=0
c2+a2+2ac+4b2−4ab−4bc=0
(c+a)2+4b2−4b(a+c)=0
(c+a)2+(2b)2−2⋅(c+a)⋅(2b)=0
[(c+a)−(2b)]2=0
⇒ c+a−2b=0
a + c = 2b
Hence proved!
I hope it helps!
Similar questions
History,
6 months ago
Computer Science,
6 months ago
Math,
6 months ago
Physics,
1 year ago
India Languages,
1 year ago
Math,
1 year ago
Math,
1 year ago
English,
1 year ago