Math, asked by arushiudanshiv12, 9 months ago

The root of
the quadratic equation y2 - 2y - 63 =0 are​

Answers

Answered by Anonymous
2

Answer:

y = 9 and -7

Step-by-step explanation:

==: y² - 2y - 63 = 0

==: y² - 9y + 7y - 63 = 0

==: y (y - 9) + 7 (y - 9) = 0

==: (y - 9) (y + 7) = 0

==: y = 9 and -7

Pls mark my answer as brainlist

Pls follow me

Answered by Remi14
2

Answer:

hey mate.... ur answer is -7, 9

Step-by-step explanation:

Step-1 : Multiply the coefficient of the first term by the constant   1 • -63 = -63  

Step-2 : Find two factors of  -63  whose sum equals the coefficient of the middle term, which is   -2 .

     -63    +    1    =    -62  

     -21    +    3    =    -18  

     -9    +    7    =    -2    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  -9  and  7  

                    y2 - 9y + 7y - 63

Step-4 : Add up the first 2 terms, pulling out like factors :

                   y • (y-9)

             Add up the last 2 terms, pulling out common factors :

                   7 • (y-9)

Step-5 : Add up the four terms of step 4 :

                   (y+7)  •  (y-9)

            Which is the desired factorization

y + 7 = 0  /  y + (-9) = 0

y = -7 , 9

please mark me as brainliest

Similar questions