Math, asked by mathewramos183, 1 month ago

The roots are 8 - √5and 8 +√5 ( form the qe in standard form given condition)

Answers

Answered by kartik2507
0

Step-by-step explanation:

x = 8 -  \sqrt{5}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x = 8 +  \sqrt{5}  \\ x - 8 +  \sqrt{5}  = 0 \:  \:  \:  \:  \:  \:  \:  \: x - 8 -  \sqrt{5}  = 0 \\ multipling \: both \\( (x - 8) +  \sqrt{5} ) \times ((x - 8)  -  \sqrt{5} ) \\ it \: is \: in \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \: form \\  {(x - 8)}^{2}  -  {( \sqrt{5}) }^{2}  \\  {(x - 8)}^{2}  - 5 \\  {(x - 8)}^{2} is \: in \:  {(a - b)}^{2} form \\  {x}^{2}  + 64 - 16x - 5 \\  {x}^{2}  - 16x + 59

the required quadratic equation is x² - 16x + 59

other method

x² - (α+β)x + αβ

where \:  \alpha  = 8 -  \sqrt{5}  \: and \:  \beta  = 8 +  \sqrt{5}  \\  \alpha  +  \beta  = 8  -  \sqrt{5}  + 8 +  \sqrt{5}  = 16 \\  \alpha  \beta  = (8 -  \sqrt{5} )(8 +  \sqrt{5} ) = 64 - 5 = 59 \\  {x}^{2}  - 16x + 59

Hope you get your answer

Similar questions