Math, asked by bajibashav123, 9 months ago

The roots of 2x²-5x+3=0​

Answers

Answered by Sharayu2005
2

Answer:

Roots are : 1 and 3/2

Step-by-step explanation:

Nature of roots : unequal and real

Answered by Yugant1913
9

Answer:

\huge\sf\mathbb\color{red} \underline{\colorbox{lightblue}{⚔☠answer☠⚔}}

Step-by-step explanation:

 {2x}^{2}  + 5x + 3 = 0

⟹ \:  \:  \:  \:  {x}^{2}  +  \frac{5}{2} x +  \frac{3}{2}  = 0 \\

⟹ \:  \:  \:  \:  {x}^{2}  + 2. \frac{1}{2} . \frac{5}{2} x + ( \frac{5}{4 }  {)}^{2}  -  {( \frac{5}{4}) }^{2}  +  \frac{3}{2}  = 0 \\

⟹ \:  \:  \:  \:  \:  \:  {(x +  \frac{5}{4} )}^{2}  -  \frac{25}{16}  +  \frac{3}{2}   = 0 \\

⟹ \:  \:  \:  \:  \:  \:  {(x +  \frac{5}{4} )}^{2}  +  \frac{24 - 25}{16}  = 0 \\

⟹ \:  \:  \:  \:  \:  \:    {(x +  \frac{5}{4}) }^{2}  -  \frac{1}{16}  = 0 \\

⟹ \:  \:  \:  \:  \:  {(x +  \frac{5}{4}) }^{2}  =  \frac{1}{16}  \\

Taking square root of both sides,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x +  \frac{5}{4}  = ± \sqrt{ \frac{1}{16} }  \\

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x +  \frac{5}{4} =  ± \frac{1}{4}  \\

Taking +ve sing,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x +  \frac{5}{4}  =  \frac{1}{4}  \\

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{1}{4}  -  \frac{5}{4}  =  \frac{1 - 5}{4}  \\

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{ - 4}{4}  =  - 1 \\

Taking - ve sing,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x +  \frac{5}{4} =  -  \frac{1}{4}   \\

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  -  \frac{1}{4}  -  \frac{5}{4}  \\

⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  \frac{ - 1 - 5}{4}  =  \frac{ - 6}{4}  =  \frac{ - 3}{2}  \\

∴ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x =  - 1 \:  \:  \: , \frac{ - 3}{2} . \\

Similar questions