Math, asked by igjonny01, 7 months ago

The roots of a quadratic equation are 2
& 3 respectively, find the factors &
equation. Please answer in process .

Answers

Answered by MaheswariS
0

\textbf{Given:}

\textsf{Roots are 2 and 3}

\textbf{To find:}

\textsf{Factors and equation having roots 2 and 3}

\textbf{Solution:}

\textbf{Concept used:}

\boxed{\begin{minipage}{7cm}$\\\mathsf{Quadratic\;equation\;having\;roots\;\alpha\;\&\;\beta\;is}\\\\\mathsf{x^2-(\alpha+\beta)x+\alpha\beta=0}\\$\end{minipage}}

\mathsf{Here,\;\alpha=2\;\&\;\beta=3}

\textsf{The required quadratic equation is}

\mathsf{x^2-(\alpha+\beta)x+\alpha\beta=0}

\mathsf{x^2-(2+3)x+(2)(3)=0}

\boxed{\mathsf{x^2-5x+6=0}}

\mathsf{x^2-5x+6}

\mathsf{=x^2-2x-3x+6}

\mathsf{=x(x-2)-3(x-2)}

\mathsf{=(x-2)(x-3)}

\therefore\textsf{The required factors are (x-2) and (x-3)}

\textbf{Find more:}}

1)If alpha and beta are zeroes of x2-6x+a, find the value of a if 3alpha+2beta=20

https://brainly.in/question/16419985

2)If α and β are the zeroes of the polynomial

xsquare+ x – 1, the evaluate α + β + αβ

https://brainly.in/question/17511372

Similar questions