Math, asked by Shifali553, 25 days ago

The roots of a Quadratic Equation are 3+root2 and 3-root 2 then find that equation.

Answers

Answered by SparklingBoy
4

▪Given :-

For a Quadratic Equation Zeros are

 \bf \alpha = 3 +  \sqrt{2}  \\  \bf \beta  = 3 -  \sqrt{2}

___________________________

▪To Find :-

The Quadratic Equation .

___________________________

▪Key Point :-

If sum and product of zeros of any quadratic Equation are s and p respectively,

Then,

The quadratic Equation is given by :-

 \bf  {x}^{2}  - s \: x + p=0

___________________________

▪Solution :-

Here,

 \alpha  = 3 +  \sqrt{2}  \\  \beta  = 3 -  \sqrt{2}

Sum of Zeros = s = 6

and

Product of Zeros = p = 7

So,

Required Equation should be

  \bf{x}^{2}  - 6x +  7=0

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

▪Verification :-

 \bf  {x}^{2}  - 6x + 7 = 0 \\  \\  \sf x =  \dfrac{6 \pm \sqrt{36 - 28} }{2}  \\  \\  \sf x =  \dfrac{6 \pm \sqrt{8} }{2}  \\  \\  \sf x =  \frac{6 \pm2 \sqrt{2} }{2}  \\  \\  \implies \bf x = 3 \pm \sqrt{2}

So Zeros are

 \bf3 +  \sqrt{2} \:  \: and \:  \: 3 -  \sqrt{2}

Hence Verified

___________________________

Similar questions