Math, asked by RudraPonkshe, 4 months ago

the roots of a quadratic equation are 5 and -2. find the equation

Spammers will be reported​

Answers

Answered by kailashmannem
140

 \huge{\bf{\green{\mathfrak{Question:-}}}}

  • The roots of a quadratic equation are 5 and -2. Find the equation.

 \huge {\bf{\orange{\mathfrak{Answer:-}}}}

  •  \textsf{The roots of the quadratic equation are 5 and - 2.}

  •  \boxed{\therefore{\sf{Factors \: of \: the \: quadratic \: equation \: will \: be \: (x \: - \: 5) \: and \: (x \: + \: 2).}}}

  •  \textsf{By multiplying the factors we get the Quadratic equation,}

  •  \sf{(x \: - \: 5) \: (x \: + \: 2)}

  •  \sf{x \: (x \: + \: 2) \: - \: 5(x \: + \: 2)}

  •  \sf{x^{2} \: + \: 2x \: - \: 5x \: - \: 10}

  •  \boxed{\sf{x^{2} \: - \: 3x \: - \: 10}}

 \huge{\bf{\red{\mathfrak{Conclusion:-}}}}

  •  \boxed{\therefore{\sf{x^{2} \: - \: 3x \: - \: 10 \: is \: the \: quadratic \: equation \: whose \: roots \: are \: 5 \: and \: - \: 2.}}}

 \huge{\bf{\pink{\mathfrak{Verification:-}}}}

  •  \sf{x^{2} \: - \: 3x \: - \: 10 \: = \: 0}

  •  \textsf{Substituting x = 5,}

  •  \sf{5^{2} \: - 3 \: * \: 5 \: - \: 10 \: = \: 0}

  •  \sf{25 \: - \: 15 \: - \: 10 \: = \: 0}

  •  \sf{10 \: - \: 10 \: = \: 0}

  •  \sf{0 \: = \: 0}

  •  \textsf{Substituting x = - 2,}

  •  \sf{- \: 2^{2} \: - 3 \: * \: - \: 2 \: - \: 10 \: = \: 0}

  •  \sf{4 \: + \: 6 \: - \: 10 \: = \: 0}

  •  \sf{10 \: - \: 10 \: = \: 0}

  •  \sf{0 \: = \: 0}

  •  \textsf{LHS = RHS in both the cases.}

 \huge{\bf{\purple{\mathfrak{Note:-}}}}

  • If roots of a quadratic equation is given, then the factors of that quadratic equation can be found out by equating the roots to x.

  •  \textsf{In the above problem,}

  •  \sf{5 \:= \:x}

  • x - 5 = 0 is the factor of the Quadratic equation.

  •  \sf{- \:2 \:= \:x}

  • x + 2 = 0 is the factor of the Quadratic equation.

  • Therefore, (x - 5) and (x + 2) are the factors of the Quadratic equation.

  • Ignore ( = 0) as we require here only the factors.

Answered by PopularAnswerer01
115

Question:-

  • The roots of a quadratic equation are 5 and -2. find the equation.

To Find:-

  • Find the equation.

Given:-

  • The roots of the equation are 5 and -2.

Solution:-

Formula Used:-

\sf\implies\boxed { {x}^{2}  - ( \alpha  +  \beta )x  \:  +  \alpha  \beta = 0 }

Substitute Values:-

  • The value of α is 5.

  • The value of β is -2.

\tt\implies \: { x }^{ 2 } - [ 5 + ( -2 ) ]x + ( 5 )( -2 ) = 0

\tt\implies \: { x }^{ 2 } - ( 5 - 2 )x + ( -10 ) = 0

\tt\implies \: { x }^{ 2 } - 3x - 10 = 0

Verification:-

Substitute x = 5:-

\tt\implies \: { x }^{ 2 } - 3x - 10 = 0

\tt\implies \: { 5 }^{ 2 } - 3( 5 ) - 10 = 0

\tt\implies \: 25 - 15 - 10 = 0

\tt\implies \: 25 - 25 = 0

\tt\implies \: 0 = 0


Anonymous: Great!
Similar questions