Math, asked by suru8838, 3 months ago

the roots of a quadratic equation are 5 and -2. find the equation

Spammers stay away please..​

Answers

Answered by TheDiamondBoyy
29

 \huge{\bf{\green{{Question:-}}}}

The roots of a quadratic equation are 5 and -2. Find the equation.

 \huge {\bf{\orange{{Answer:-}}}}

 \textsf{The roots of the quadratic equation are 5 and - 2.}

 \boxed{\therefore{\sf{Factors \: of \: the \: quadratic \: equation \: will \: be \: (x \: - \: 5) \: and \: (x \: + \: 2).}}}

 \textsf{By multiplying the factors we get the Quadratic equation,}

 \sf{(x \: - \: 5) \: (x \: + \: 2)}

 \sf{x \: (x \: + \: 2) \: - \: 5(x \: + \: 2)}

 \sf{x^{2} \: + \: 2x \: - \: 5x \: - \: 10}

 \boxed{\sf{x^{2} \: - \: 3x \: - \: 10}}

 \huge{\bf{\red{{Conclusion:-}}}}

 \boxed{\therefore{\sf{x^{2} \: - \: 3x \: - \: 10 \: is \: the \: quadratic \: equation \: whose \: roots \: are \: 5 \: and \: - \: 2.}}}

 \huge{\bf{\pink{{Verification:-}}}}

 \sf{x^{2} \: - \: 3x \: - \: 10 \: = \: 0}

 \textsf{Substituting x = 5,}

 \sf{5^{2} \: - 3 \: * \: 5 \: - \: 10 \: = \: 0}

 \sf{25 \: - \: 15 \: - \: 10 \: = \: 0}

 \sf{10 \: - \: 10 \: = \: 0}

 \sf{0 \: = \: 0}

 \textsf{Substituting x = - 2,}

 \sf{- \: 2^{2} \: - 3 \: * \: - \: 2 \: - \: 10 \: = \: 0}

 \sf{4 \: + \: 6 \: - \: 10 \: = \: 0}

 \sf{10 \: - \: 10 \: = \: 0}

 \sf{0 \: = \: 0}

 \textsf{LHS = RHS in both the cases.}

 \huge{\bf{\purple{{Note:-}}}}

  • If roots of a quadratic equation is given, then the factors of that quadratic equation can be found out by equating the roots to x.

  •  \textsf{In the above problem,}

  •  \sf{5 \:= \:x}

  • x - 5 = 0 is the factor of the Quadratic equation.

  •  \sf{- \:2 \:= \:x}

  • x + 2 = 0 is the factor of the Quadratic equation.

  • Therefore, (x - 5) and (x + 2) are the factors of the Quadratic equation.

  • Ignore ( = 0) as we require here only the factors.

Answered by yathun
0
Required quadratic equation
Attachments:
Similar questions