Math, asked by rani98692, 8 months ago



The roots of equation ax² +bx+c =0,a is not equal to 0 are equal then the roots are
1) -b/a ,-b/a 2) c/a,c/a
3) -b/2a,-b/2a 4) c/2a,c/2a

Answers

Answered by RISH4BH
94

\Large{\underline{\underline{\red{\tt{\purple{\leadsto } GiveN:-}}}}}

  • The roots of quadratic equⁿ ax² + bx + c are equal .
  • a is not equal to 0 . ( a ≠ 0 ) .

\Large{\underline{\underline{\red{\tt{\purple{\leadsto } To\:FinD:-}}}}}

  • The roots of the quadratic equation.

\Large{\underline{\underline{\red{\tt{\purple{\leadsto } FormulA\:UseD:-}}}}}

\sf{ We \:will \:use}\: \bf"Quadratic formula ":-

\large\orange{\underline{\boxed{\green{\tt{\blue{\dag } x\:\:=\:\:\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}}}}}

\Large{\underline{\underline{\red{\tt{\purple{\leadsto } AnsweR:-}}}}}

Given quadratic equation to us is : ax²+bx+c = 0 .

\tt Have\:a\:look\:at\:this\:table:

\boxed{\begin{tabular}{|c|c|} \cline{1-2} \bf Condition & \bf Nature of Roots \\ \cline{1-2} $\sf D>0 $ &\sf Roots are real \\ \cline{1-2} $\sf D=0$ & Roots are equal \\ \cline{1-2} $\sf D<0$& \sf Roots are complex (Imaginary) \\ \cline{1-2}\end{tabular}}

From the table it is clear that if the roots are equal then Discriminant = 0 .

Now, put this value in " Quadratic formula " ,

\tt:\implies x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}

\tt:\implies x=\dfrac{-b\pm\sqrt{0}}{2a}

\tt:\implies x=\dfrac{-b+0}{2a}\:,\:\dfrac{-b-0}{2a}

\underline{\boxed{\red{\tt{\longmapsto \:\:x\:\:=\:\:\dfrac{-b}{2a}\:\:,\:\:\dfrac{-b}{2a}}}}}

\orange{\boxed{\purple{\bf{\dag Hence\: correct\: option\:is\:[3].}}}}

Similar questions