Math, asked by s14bh4t, 2 months ago

the roots of equation x² - (m-3) x + m = 0 are such that exactly one of them lies in the interval (1.2) then
1. 5<m<7
2. m<10
3. 2<m<5
4. m>10​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

\large\underline{\sf{Given- }}

A quadratic equation

\red{\rm :\longmapsto\: {x}^{2} - (m - 3)x + m = 0}

Let assume that

\red{\rm :\longmapsto\:f(x) =  {x}^{2} - (m - 3)x + m}

Consider,

\red{\rm :\longmapsto\:f(1) =  {1}^{2} - (m - 3)(1) + m}

\rm \:  =  \:  \: 1 - m + 3 + m

\rm \:  =  \:  \: 4

\bf\implies \:f(1) = 4

Consider,

\red{\rm :\longmapsto\:f(2) =  {(2)}^{2} - (m - 3)(2) + m}

\rm \:  =  \:  \: 4 - 2m + 6 + m

\rm \:  =  \:  \: 10 - m

\bf\implies \:f(2) = 10 - m

Now, According to statement, it is given that one root exactly lies in between ( 1, 2 ).

\rm :\implies\:f(1) \: f(2) \:  &lt;  \: 0

\rm :\longmapsto\:4(10 - m) &lt; 0

\rm :\longmapsto\:10 - m &lt; 0

\rm :\longmapsto\: - m &lt;  - 10

\bf\implies \:m &gt; 10

Hence,

Option 4 is correct.

Additional Information :-

Let assume that

\rm :\longmapsto\: \alpha , \beta  \: are \: the \: roots \: of \:  {ax}^{2} +  bx + c = 0, \: then

Case :- 1 Both roots are positive.

\red{\rm :\longmapsto\: \alpha +   \beta  &gt; 0}

\red{\rm :\longmapsto\: \alpha  \beta  &gt; 0}

\red{\rm :\longmapsto\: {b}^{2} - 4ac \geqslant 0}

Case :- 2 Both roots are negative

\red{\rm :\longmapsto\: \alpha +   \beta   &lt;  0}

\red{\rm :\longmapsto\: \alpha  \beta  &gt; 0}

\red{\rm :\longmapsto\: {b}^{2} - 4ac \geqslant 0}

Case :- 3 Roots are of opposite sign

\red{\rm :\longmapsto\: \alpha  \beta   &lt;  0}

\red{\rm :\longmapsto\: {b}^{2} - 4ac  &gt;  0}

Similar questions