The roots of given quadratic equation are
Attachments:
Answers
Answered by
16
ANSWER:
- Roots of the given quadrtic polynomial is -√3 or -7√3/3
GIVEN:
- P(x) = √3x²+10x+7√3 = 0
TO FIND:
- Roots of the above expression.
SOLUTION:
=> √3x²+10x+7√3 = 0
=> √3x²+3x+7x+7√3 = 0
=> (√3x²+3x)+(7x+7√3) = 0
=> √3x(x+√3) +7(x+√3) = 0
=> (x+√3)(√3x+7) = 0
Either (x+√3) = 0
=> x = -√3
Either (√3x+7) = 0
=> √3x = -7
=> x = -7/√3
After rationalising
=> x = -7√3/3
Roots of the given quadrtic polynomial is -√3 or -7√3/3
NOTE:
Some important formulas:
(a+b)² = a²+b²+2ab
(a-b)² = a²+b²-2ab
(a+b)(a-b) = a²-b²
(a+b)³ = a³+b³+3ab(a+b)
(a-b)³ = a³-b³-3ab(a-b)
a³+b³ = (a+b)(a²+b²-ab)
a³-b³ = (a-b)(a²+b²+ab)
(a+b)² = (a-b)²+4ab
(a-b)² = (a+b)²-4ab
Similar questions