Math, asked by balajisingh663, 11 months ago

the roots of quadratic equation -39 X square + 8 x + 1 is equal to zero​

Answers

Answered by ShresthaTheMetalGuy
0

Answer:

p(x)=–39x²+8x+1=0

x =  \frac{ - b± \sqrt{ {b}^{2}  - 4ac} }{2a}

Using the Quadratic Formula:

x =  \frac{ - 8± \sqrt{ {8}^{2} - 4( - 39)(1) } }{(2)( - 39)}

x =  \frac{ - 8± \sqrt{64 + 156} }{ - 78}

x =  \frac{ - 8± \sqrt{220} }{ - 78}

x =  \frac{ - 8± \sqrt{2 {}^{2} \times 5 \times 11 } }{ - 78}

x =  \frac{ - 8± 2\sqrt{55} }{ - 78}  =  \frac{ - 4± \sqrt{55} }{ - 39}

Therefore,

x =  \frac{ 4 -  \sqrt{55} }{39}

OR

x =  \frac{  4   +  \sqrt{55} }{ 39}

Similar questions