Math, asked by engelesha322, 7 months ago

 The roots of quadratic equation 5xᒾ -4x +5=0 are​

Answers

Answered by itsgagan
2

Answer:

sory

Step-by-step explanation:

Answered by aryan073
0

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\bigstar\boxed{\bf\red{Question}}

 \:  \:  \:  \:  \clubsuit \bf{ \: the \: roots \: of \: quadratic \: equation \: 5 {x}^{2}  - 4x + 5 = 0 \: are}

\underline{\underline{{\purple{\sf Given\: Equation:}}}}

 \:  \:  \:  \:  \:  \to \bf{5 {x}^{2}  - 4x + 5 = 0}

 \:  \:  \:  \:  \huge \boxed{ \sf{ \: by \: discriminant \: form}}

 \:  \:  \:  \:   \implies  \tt{ {b}^{2} - 4ac}

 \:  \:  \:  \to  \tt {  {b}^{2}  - 4ac}

 \:  \:  \:  \spadesuit  \bf{ \: here \: b =  - 4 \: and \: a = 5 \: and \: c = 5}

 \:  \:  \:  \:  \:  \to { {( - 4)}^{2}  - 4(5)(5)}

 \:  \:  \:  \to  \tt {16 - 100 < 0}

 \:  \:  \:  \:  \to \tt{ - 84 < 0}

 \:  \:  \:  \:  \:  \star \sf{ \ \: by \: formula \: method}

 \:  \:  \:  \implies  \bf { \: x =  \frac{ - b \pm  \sqrt{  {b}^{2} - 4ac } }{2a} }

 \:  \:  \:  \:  \:  \implies \bf{x =  \frac{ 4 \pm \sqrt{ - 84} }{10} }

 \:  \:  \:  \:  \implies \bf{x =  \frac{4 \pm 2\sqrt{21} }{10} }

 \:  \:  \:  \implies \bf{x =  \frac{2(2  \pm \sqrt{21}) }{2 \times 5} }

 \:  \:  \:  \:  \implies \bf{x =   \cancel\frac{2}{5}  \times  \frac{2 \pm \sqrt{21} }{5} }

 \:  \:  \:  \:  \implies \bf{x =  \frac{2  \pm \sqrt{21} }{5} }

 \:  \:  \:  \:  \:  \blue \bigstar \displaystyle \sf{here \: we \: get \: two \: roots \: because \: of \: degree \: 2 \: }

 \:  \:  \:  \pink \bigstar \displaystyle \sf{our \: answer \: will \: be \: x =  \frac{2 +  \sqrt{21} }{5}  \: and \: x =  \frac{2 -  \sqrt{21} }{5} }

 \:  \:  \:    \clubsuit\boxed{ \bf{hence \:proved}}

Similar questions