Math, asked by kevy9045, 4 months ago

the roots of quadratic equation ax^2+bx +c=0 are alpha and beta then whose equation roots are alpha square and beta square

Answers

Answered by suhail2070
0

Answer:

\\  {a}^{2}  {x}^{2}  - ( {b}^{2}  - 2 {a}^{3}b )x +  {c}^{2}  = 0 \\  \\

Step-by-step explanation:

 \alpha  +  \beta  =  -  \frac{b}{a}  \\  \\  \alpha  \beta  =  \frac{c}{a}  \\  \\  { \alpha }^{2}  +  { \beta }^{2}  =  {( \alpha   + \beta )}^{2}  - 2 \alpha  \beta  \\  \\  =  \frac{ {b}^{2} }{ {a}^{2} }  - 2ab \\  \\  {( \alpha  \beta )}^{2}  =  \frac{ {c}^{2} }{ {a}^{2} }  \\  \\ required \: equation \:  \\  \\  {x}^{2}  - ( { \alpha }^{2}  +  { \beta }^{2} )x +  { \alpha }^{2}  { \beta }^{2}  = 0 \\  \\  {x}^{2}  - ( \frac{ {b}^{2} -  2 {a}^{3} b}{ {a}^{2} } )x +   \frac{ {c}^{2} }{ {a}^{2} } = 0 \\  \\  \\  \\  {a}^{2}  {x}^{2}  - {(b}^{2}  - 2 {a}^{3} b)x+  {c}^{2}  = 0 \\  \\  {a}^{2}  {x}^{2}  - ( {b}^{2}  - 2 {a}^{3}b )x +  {c}^{2}  = 0 \\  \\

Similar questions