The roots of the equation 9x^2-bx +18 =o will be equal ,if the value of b is
Answers
Answered by
1
Therefore.,
•••♪
Answered by
0
Step-by-step explanation:
ComparegivenQuadraticequation
9x^{2} - bx + 18 = 0\:with \: Ax^{2}+Bx +C=0,9x
2
−bx+18=0withAx
2
+Bx+C=0,
we \:getweget
A = 9 , B = -b , C = 18A=9,B=−b,C=18
Discreminant (D) = 0 \: [ Given \:equal \:roots]Discreminant(D)=0[Givenequalroots]
\implies B^{2} - 4AC = 0⟹B
2
−4AC=0
\implies (-b)^{2} = 4AC⟹(−b)
2
=4AC
\implies b^{2} = 4\times 9 \times 18⟹b
2
=4×9×18
\implies b^{2} = 2\times 2 \times 9 \times 9 \times 2⟹b
2
=2×2×9×9×2
\implies b= \pm \sqrt{2\times 2 \times 9 \times 9 \times 2}⟹b=±
2×2×9×9×2
\implies b= \pm 2\times 9 \sqrt{2}⟹b=±2×9
2
\implies b= \pm 18 \sqrt{2}⟹b=±18
2
Therefore.,
Similar questions