Math, asked by devanshsingh066, 8 months ago

The roots of the equation a(x2 + 1) - x(a2 + 1) = 0 is​

Answers

Answered by Anonymous
7

Answer:

An Quadratic equations,

 \bf \implies \:a( {x}^{2}   + 1) - x( {a}^{2}  + 1) = 0 \\  \\ \bf \implies \: {ax}^{2}  + a - x( {a}^{2}  +1 ) = 0 \\  \\ \bf \implies \: {ax}^{2}  - ( {a}^{2}  + 1)x + a = 0

Here,

  • A = a
  • B = -(a²+1)
  • C= a

Splitting the middle term!!!

\bf \implies \: {ax}^{2}  -  {a}^{2} x - x + a = 0 \\  \\ \bf \implies \:ax(x - a) - 1(x - a) = 0 \\  \\ \bf \implies \:(ax - 1)(x - a) = 0 \\  \\ \bf \implies \:ax - 1 = 0 \:  \:  \:  \:  \:  \:  \: (or) \:  \:  \:  \:  \:  \: x - a = 0 \\  \\ \bf \implies \:x =  \frac{1}{a}  \:  \:  \:  \: (or) \:  \:  \:  \: a

Roots of the Quadratic equations is 1/a or a!!!!

Verification:-

Sum of zeroes = -b/a = 1/a+a = -(-(+1))/a

° (1+ )/a = (1+)/a

Products of zeroes = c/a = 1/a =a/a

° 1 = 1

Hence verified!!!!

Similar questions