Math, asked by jethwaarjun442, 7 months ago

The roots of the equation x2 + 6x - 4 = 0 are α, β. Find the quadratic equation whose roots are α2 and β2

Answers

Answered by Anonymous
20

 \large\bf\underline \orange{Given:-}

  • p(x) = x² + 6x - 4 = 0

 \large\bf\underline \orange{To \: find:-}

  • Find the quadratic equation whose roots are α2 and β2

 \huge\bf\underline \green{Solution:-}

★ Given polynomial = x² + 6x - 4 = 0

  • a = 1
  • b = 6
  • c = -4

  • α + β = -b/a

⠀⠀⠀⠀⠀➝α + β = -6/1

⠀⠀⠀⠀⠀➝α + β = -6

  • αβ = c/a

⠀⠀⠀⠀⠀➝ -4/1

⠀⠀⠀⠀⠀➝ -4

  • α² + β² = (α + β)² - 2αβ

⠀⠀⠀⠀⠀➝ α² + β² = (-6)² - 2× -4

⠀⠀⠀⠀⠀➝ α² + β² = 36 + 8

⠀⠀⠀⠀⠀➝ α² + β² = 44

The quadratic polynomial whose roots are α² and β²

★ Formula for quadratic equation :-

  • x² - (α + β)x + αβ

⠀⠀⠀⠀⠀➝ x² - (α² + β²)x + α²β²

⠀⠀⠀⠀⠀➝ x² - (44)x + (-4)²

⠀⠀⠀⠀⠀➝ x² - 44x + 16

So,

the quadratic equation whose roots are α2 and β2 is ★ x² - 44x + 16.

Answered by BrainlyPopularman
12

Question :

The roots of the equation x² + 6x - 4 = 0 are α, β. Find the quadratic equation whose roots are α² and β².

ANSWER :

GIVEN :

A quadratic equation x² + 6x - 4 = 0 have two roots α, β .

TO FIND :

• Another quadratic equation whose roots are α² and β².

SOLUTION :

• A quadratic equation ax² + bx + c = 0 whose roots are α and β , then –

  \\ \:  \:  \: \: \: { \huge{.}} \:  \: { \bold{sum \:  \: of \:  \: roots \:  \:  =  \alpha  +  \beta  = -   \dfrac{b}{a} }} \\

  \\ \:  \:  \:  \:  \: { \huge{.}} \:  \: { \bold{product \:  \: of \:  \: roots \:  \:  =  \alpha  . \beta  =   \dfrac{c}{a} }} \\

• Here –

  \\ \:  \:  \:  \:  \: { \huge{.}} \:  \: { \bold{a = 1 }} \\

  \\ \:  \:  \:  \:  \: { \huge{.}} \:  \: { \bold{b = 6 }} \\

  \\ \:  \:  \:  \:  \: { \huge{.}} \:  \: { \bold{c = -4 }} \\

• So that –

  \\   \longrightarrow \:  \: { \bold{sum \:  \: of \:  \: roots \:  \:  =  \alpha  +  \beta  = -   \dfrac{6}{1} }} \\

  \\ \:  \:  \:  \: \: \: { \huge{.}} \:  \: { \bold{  \alpha  +  \beta  = - 6  \:  \:  \:  \:  \:  -  -  -  - eq.(1)}} \\

  \\  \longrightarrow \:  \: { \bold{product \:  \: of \:  \: roots \:  \:  =  \alpha  .  \beta  =   \dfrac{ - 4}{1} }} \\

  \\ \:  \:  \:  \: \: \: \: { \huge{.}} \:  \: { \bold{  \alpha  .  \beta  = - 4  \:  \:  \:  \:  \:  -  -  -  - eq.(2)}} \\

☞ Now Another quadratic equation whose roots are α² and β²

  \\ \longrightarrow \:  \: { \bold{sum \:  \: of \:  \: roots \:  \:of \:  \: required \:  \:  \: ploynomial  =   { \alpha }^{2}  +  { \beta }^{2}  }} \\

  \\ \:  \:  \:  \:  \: \: \: { \huge{.}} \:  \: { \bold{sum \:  \: of \:  \: roots  =   {( \alpha +  \beta ) }^{2}  - 2 \alpha  \beta \:  \:  \:   [ \:  \because \:  \:  {(a + b)}^{2} =  {a}^{2} +  {b}^{2}  + 2ab  ]}} \\

  \\ \:  \:  \:  \:  \: \:  \:{ \huge{.}} \:  \: { \bold{sum \:  \: of \:  \: roots  =   {(  - 6) }^{2}  - 2 ( - 4) \:  \:  \:   \:  \:  \:  [  \: using \:  \: eq.(1) \:  \: and \:  \: (2)  ]}} \\

  \\ \:  \:  \:  \:  \: \:  \:{ \huge{.}} \:  \: { \bold{sum \:  \: of \:  \: roots  =   36   + 8\:  \:  \:}} \\

  \\ \:  \:  \:  \:  \: \:  \: { \huge{.}} \:  \: { \bold{sum \:  \: of \:  \: roots  =   44\:  \:  \:}} \\

  \\ \longrightarrow \:  \: { \bold{product \:  \: of \:  \: roots \:  \:of \:  \: required \:  \:  \: ploynomial  =   { \alpha }^{2}  .  { \beta }^{2}  }} \\

  \\ \:  \:  \:  \:  \: \:  \:{ \huge{.}} \:  \: { \bold{product\:  \: of \:  \: roots  =   {( \alpha . \beta ) }^{2}}} \\

  \\ \:  \:  \:  \:  \:  \:  \:{ \huge{.}} \:  \: { \bold{product \:  \: of \:  \: roots  =   {(  - 4) }^{2}  \:  \:  \:   \:  \:  \:  [  \: using \:  \: eq.(2)  ]}} \\

  \\ \:  \:  \:  \:  \:  \:  \:{ \huge{.}} \:  \: { \bold{product \:  \: of \:  \: roots  =   16\:  \:  \:}} \\

• New quadratic equation –

  \\ \longrightarrow \:  \: { \red { \bold{ {x}^{2}   - (sum \:  \: of \:  \: roots)x + product \:  \: of \:  \: roots \:   =  0\:  \:  \:}}} \\

• So that required quadratic equation –

  \\ \longrightarrow \:  \:  \large { \green{ \boxed{ \bold{ {x}^{2}   - 44x +16  =  0}}}} \\

Similar questions