The roots of the quadratic equation
are
please do the solution fast it's urgent
wrong answer will be report
Answers
Step-by-step explanation:
1
Common factor
72+63=0
7x^{2}+63=07x2+63=0
7(2+9)=0
7(x^{2}+9)=07(x2+9)=0
2
Divide both sides of the equation by the same term
7(2+9)=0
7(x^{2}+9)=07(x2+9)=0
2+9=0
x^{2}+9=0x2+9=0
3
Use the quadratic formula
=−±2−4√2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}x=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
2+9=0
x^{2}+9=0x2+9=0
=1
a={\color{#c92786}{1}}a=1
=0
b={\color{#e8710a}{0}}b=0
=9
c={\color{#129eaf}{9}}c=9
=−0±02−4⋅1⋅9√2⋅1
x=\frac{-{\color{#e8710a}{0}} \pm \sqrt{{\color{#e8710a}{0}}^{2}-4 \cdot {\color{#c92786}{1}} \cdot {\color{#129eaf}{9}}}}{2 \cdot {\color{#c92786}{1}}}x=2⋅1−0±02−4⋅1⋅9
4
Simplify
Evaluate the exponent
Multiply the numbers
Subtract the numbers
Multiply the numbers
=0±−36√2
x=\frac{0 \pm \sqrt{-36}}{2}x=20±−36
Step-by-step explanation:
First we are writing the equation
7x² + 63 = 0
7x² + 63 = 07x² = -63
7x² + 63 = 07x² = -63x² = - 63/7
7x² + 63 = 07x² = -63x² = - 63/7x² = -9
7x² + 63 = 07x² = -63x² = - 63/7x² = -9x = +3 (or) -3