Math, asked by alinasethi9, 1 month ago

The roots of the quadratic equation
7 {x}^{2}  + 63 = 0 \\
are



please do the solution fast it's urgent
wrong answer will be report


Answers

Answered by bagedivya
0

Step-by-step explanation:

1

Common factor

72+63=0

7x^{2}+63=07x2+63=0

7(2+9)=0

7(x^{2}+9)=07(x2+9)=0

2

Divide both sides of the equation by the same term

7(2+9)=0

7(x^{2}+9)=07(x2+9)=0

2+9=0

x^{2}+9=0x2+9=0

3

Use the quadratic formula

=−±2−4√2

x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}x=2a−b±b2−4ac

Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.

2+9=0

x^{2}+9=0x2+9=0

=1

a={\color{#c92786}{1}}a=1

=0

b={\color{#e8710a}{0}}b=0

=9

c={\color{#129eaf}{9}}c=9

=−0±02−4⋅1⋅9√2⋅1

x=\frac{-{\color{#e8710a}{0}} \pm \sqrt{{\color{#e8710a}{0}}^{2}-4 \cdot {\color{#c92786}{1}} \cdot {\color{#129eaf}{9}}}}{2 \cdot {\color{#c92786}{1}}}x=2⋅1−0±02−4⋅1⋅9

4

Simplify

Evaluate the exponent

Multiply the numbers

Subtract the numbers

Multiply the numbers

=0±−36√2

x=\frac{0 \pm \sqrt{-36}}{2}x=20±−36

Answered by arultheprince01
0

Step-by-step explanation:

First we are writing the equation

7x² + 63 = 0

7x² + 63 = 07x² = -63

7x² + 63 = 07x² = -63x² = - 63/7

7x² + 63 = 07x² = -63x² = - 63/7x² = -9

7x² + 63 = 07x² = -63x² = - 63/7x² = -9x = +3 (or) -3

hope it helps u..,

Similar questions