Math, asked by Arpitd, 9 months ago

the roots of x^2‐2x‐(r^2‐1)=0 are​

Answers

Answered by st279444
1

We are given,

f(x)=x

2

−2x+(−a

2

+1)=0→(1)

here the co-efficient of x

2

is positive & g(x)=x

2

−(a+1)x+(a−1)=0→(2) & also here the co-efficient of x

2

is positive.

⇒ Let α

1

1

are the roots of f(x) & α

2

2

are the roots of g(x).

Now, here we can absorbed that at pt α

1

& β

1

g(x) will generated negative values.

So, g(α

1

),g(β

2

)<0

From equati0on (1)

α

1

or β

1

=

2a

−b±

b

2

−4ac

=

2(1)

−(−2)±

(−1)

2

−4(1)(a−1)

=

2

4a

2

=1±a

So, α

1

=1+a & β

1

=1−a

as a∈R

Now, g(α

1

)=(1+a)

2

−(a+1)(1+a)+1(a−1)<0

1+2a+a

2

−a

2

−2a−1+a−1<0

a<1

→(1)

& g(β

1

)=(1−a)

2

−(a+1)(1−a)+1(a−1)<0

1−2a+a

2

−(a−a

2

+1−a)+a−1<0

1−2a+a

2

+a

2

−1+a−2<0

2a

2

−a−1<

2a

2

−2a+a−1<0

2a(a−1)+1(a−1)<0

(2a+1)(a−1)<0

→ at a>1 quantity >0, so condition False

→ now at a<−1/2 quantity >0, so condition again False

→ now at a ∈(−1/2,1) quantity <0

So, a∈(−1/2,1)→((1)

From (i) & (ii)

a∈(

2

−1

,1)

solution

Similar questions