The roots of (x-a)(x-b)=b2 are
Answers
Answered by
2
Answer:
i hope this answer will be helpful
Attachments:
Answered by
2
Given: The equation as: ( x - a ) ( x - b ) = b^2
To find: The roots of the given equation?
Solution:
- Now we have given the equation as:
( x - a ) ( x - b ) = b^2
- Now expanding it, we get:
x^2 - ax - bx + ab = b^2
x^2 - (a + b)x - b^2 + ab = 0
- Now by the roots formula, we have:
- (-(a+b)) ± √((-(a+b))^2 - 4(ab - b^2)) / 2
a+b ± √(a^2 + b^2 + 2ab - 4ab + 4b^2) / 2
a+b ± √((a-b)^2 + 4b^2) / 2
- Now here Discriminant should be greater than or equal to 0.
((a-b)^2 + 4b^2) > 0
(a-b)^2 + 4b^2 > 0
- So here exist two distinct real roots of the equation given.
a+b + √((a-b)^2 + 4b^2) / 2 and a+b - √((a-b)^2 + 4b^2) / 2
Answer:
So the roots are:
a+b + √((a-b)^2 + 4b^2) / 2 and a+b - √((a-b)^2 + 4b^2) / 2
Similar questions