Math, asked by nithish60, 10 months ago

The
∆RPQ is right angled at Q
PQ=5cm. and RQ=10cm, find
& SinP,cosP, CosR, tanR​

Answers

Answered by sonal7443
3

Answer:

hii mate ur ans in this attachment..

plx mark me as a brainlist ♥️

Attachments:
Answered by Anonymous
85

⠀⠀⠀⠀⠀\huge\underline{ \mathrm{ \red{QueS{\pink{tiOn}}}}}

The

∆RPQ is right angled at Q

PQ=5cm. and RQ=10cm, find

& SinP,cosP, CosR, ttanR

_______________________________________________

⠀⠀⠀⠀⠀⠀\huge{ \underline{ \purple{ \bold{ \underline{ \mathrm{ExPlanA{\green{TiOn }}}}}}}}

  \large\underline{ \underline{ \blue{ \bold {Given}}}} =  >

⠀⠀⠀⠀※ A right angled triangle⠀RPQ.

⠀⠀⠀⠀※ PQ = 5cm

⠀⠀⠀⠀※ PQ = 5cm⠀⠀⠀⠀

______________

\large\underline{ \underline{ \blue{ \bold{To\:Find}}}}  =  >

⠀⠀⠀⠀⠀※ sin P

⠀⠀⠀ cos P

⠀⠀⠀⠀⠀ cos R

⠀⠀⠀⠀⠀ tan R

______________

\large\underline{ \underline{ \blue{ \bold{solution}}}}  =  >

⠀⠀⠀⠀⠀By Pythagoras theorem

⠀⠀⠀⠀⠀

 \bold {RP {}^{2} =RQ {}^{2} +PQ {}^{2} }

⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀ \bold{RP {}^{2}  = 10 {}^{2}  + 5 {}^{2} } \\  \\  \bold{RP =  \sqrt{125} } \\  \\  \bold{RP = 5 \sqrt{5}cm }

 \bold{sin \:  P=  \frac{ RQ}{RP}}  \\  \\  =  >  \:  \:  \:  \:  \:  \:  \frac{10}{5 \sqrt{5} }   \\  \\  =  >  \:  \:  \:  \:  \:  \:  \frac{2}{ \sqrt{5} }

⠀⠀⠀⠀⠀ \bold{cos \:P= \frac{ QP }{RP} } \\  \\  =  >  \:  \:  \:  \:  \frac{5}{5 \sqrt{5} }  \\  \\  =  >  \:  \:  \:  \:  \frac{1}{ \sqrt{5} }

 \bold{Cos  \: R= \frac{RQ}{RP} } \\  \\  =  >  \:  \:  \:  \:  \frac{10}{5 \sqrt{5} }  \\  \\  =  >  \:  \:  \:  \:  \frac{2}{ \sqrt{5} }

⠀⠀⠀⠀⠀ \bf \: Tan  \: R=  \frac{ QP }{RP}  \\  \\  =  >   \bf\:  \:  \:  \:  \frac{5}{10}   \\  \\  =  >  \:  \:  \:  \:   \frac{1}{2}

______________________________

hops this may help you

⠀⠀⠀⠀⠀⠀⠀⠀ \huge{ \pink{ \ddot{ \smile}}}

⠀⠀⠀⠀⠀⠀ \huge \mathfrak{ \red { \bigstar{thanks}}}

Similar questions