Math, asked by rohitrao5545, 1 year ago

The sample mean and sample variance of five data values are, respectively, x = 104 and s2 = 4. If three of the data values are 102, 100, 105, what are the other two data values

Answers

Answered by amitnrw
2

Given : The sample mean and sample variance of five data values are, respectively, x = 104 and s²= 4

three of the data values are 102, 100, 105

To Find  : what are the other two data values

Solution:

let say remaining two values are 104+a  & 104+b

Mean = ( 102 + 100 + 105 + 104+a +104+ b) / 5

=> 104 = ( 515 + a + b)/6

=> 520 = 515 + a + b

=> a + b = 5

               xi - mean    (xi - mean)²

102         -2                  4

100         -4                  16    

105          1                   1

104+a       a                  a²

b              b                   b²

                                  21 + a² + b²

S² = ∑ (xi- Mean)² /(n-1)

4  =    (21 + a² + b²)/(5 - 1)

=> 16 = 21 + a² + b²

=> a² + b² = - 5

a² + b²  can not be negative

Hence mistake in Data

Taking s = 4

=> s² = 16

=> 16 =  (21 + a² + b²)/(5 - 1)

=> a² + b² = 43

   a + b = 5

Squaring both sides

=> a² + b² + 2ab = 25

=> 2ab = -18

=> ab = - 9

x² - 5x  - 9  = 0

=> x = (5 ± √61)/2  

=> x  = 6.4   , - 1.4

a = 6.4   b = - 1.4

b = -1.4   a  = 6.4

104 + a  =   110.4

104 + b =    102.6

the other two data values  are  110.4   and   102.6

Learn More:

The arithmetic mean and variance of a set of ten figures are known ...

https://brainly.in/question/18412385

A sample of charge accounts at a local drug store revealed the ...

https://brainly.in/question/12925644

Similar questions