Math, asked by nikitakherde4, 7 months ago

the second and the fourth teram of an A.P are 12 and 20 respectively find the sum of the frist 25 terms of that A.P​

Answers

Answered by TheProphet
14

S O L U T I O N :

\underline{\bf{Given\::}}

The second & the fourth terms of an A.P. are 12 & 20 respectively.

\underline{\bf{Explanation\::}}

As we know that formula of an A.P;

\boxed{\bf{a_n =a+(n-1)d}}

  • a is the first term.
  • d is the common difference.
  • n is the term of an A.P.

\underline{\underline{\tt{According\:to\:the\:question\::}}}

\mapsto\tt{a_2 = 12}

\mapsto\tt{a+(2-1)d = 12}

\mapsto\tt{a+(1)d = 12}

\mapsto\tt{a+d= 12}

\mapsto\tt{a= 12-d............(1)}

&

\mapsto\tt{a_4 = 20}

\mapsto\tt{a+(4-1)d = 20}

\mapsto\tt{a+(3)d= 20}

\mapsto\tt{a+3d= 20}

\mapsto\tt{(12-d)+3d= 20\:\:[from(1)]}

\mapsto\tt{12-d+3d= 20}

\mapsto\tt{12+2d= 20}

\mapsto\tt{2d= 20-12}

\mapsto\tt{2d= 8}

\mapsto\tt{d= \cancel{8/2}}

\mapsto\bf{d = 4}

Putting the value of d in equation (1),we get;

\mapsto\tt{a = 12-4}

\mapsto\bf{a = 8}

Now,

As we know that formula of the sum of an A.P.;

\boxed{\bf{S_n = \frac{n}{2} \bigg[2a+(n-1)d\bigg]}}

\longrightarrow\tt{S_{25} = \dfrac{25}{2} \bigg[2(8) + (25-1)(4)\bigg]}

\longrightarrow\tt{S_{25} = \dfrac{25}{2} \bigg[16 + (24)(4)\bigg]}

\longrightarrow\tt{S_{25} = \dfrac{25}{2} \bigg[16 + 96\bigg]}

\longrightarrow\tt{S_{25} = \dfrac{25}{2} \bigg[112\bigg]}

\longrightarrow\tt{S_{25} = \dfrac{25}{\cancel{2}} \times \cancel{112}}

\longrightarrow\tt{S_{25} = 25 \times 56}

\longrightarrow\bf{S_{25} = 1400}

Thus,

The sum of the first 25 terms of that A.P. will be 1400 .

Similar questions