Math, asked by sahil71180, 4 months ago

the semi-perimeter of ∆ABC whose sides are 10cm,8cm and 12cm is​

Answers

Answered by khusi6290
0

Answer:

142 g/mol

Step-by-step explanation:

Na. -2 moles × 23 = 46

S - 1 moles × 32 = 32

O - 4 moles × 16 = 64

46+32+64 = 142g/mol

Answered by Intelligentcat
75

Answer:

Given :-

Sides :-

a = 10cm

b = 8cm

c = 12 cm

Solution :-

Diagram

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1, 0)(1,0)(3,3)\qbezier(5,0)(5,0)(3,3)\qbezier(5,0)(1,0)(1,0)\put(2.85,3.2){$\bf A$}\put(0.5,-0.3){$\bf C$}\put(5.2,-0.3){$\bf B$}\end{picture}

As we all know ,

The perimeter of Triangle ↬ sum of all sides

Perimeter ↬ ( a + b + c )

From given

➤ a = 24 cm

➤ b = 7 cm

➤ c = 25 cm

Now,

Applying the Heron's Formula

 \bold{According \: to \: heron's \: formula} \\ \tt:  \implies  s  = \frac{a + b + c}{2}  \\  \\ \tt:  \implies  s  = \frac{10 + 8 + 12}{2}  \\  \\ \tt:  \implies  s  = \frac{30}{2}  \\  \\  \bf{\tt:  \implies  s  = 15}

Here s is the half perimeter ( semi perimeter )

You can even find area of triangle now ,

\bold{For \: Area \: of \: triangle} \\  \tt:  \implies  Area \: of \: triangle = \sqrt{s(s - a)(s - b)(s - c)}  \\  \\ \tt:  \implies  Area \: of \: triangle = \sqrt{15(15 - 10)(15 - 8)(15 - 12)}  \\  \\ \tt:  \implies  Area \: of \: triangle = \sqrt{15 \times 5 \times 7\times 3 }  \\  \\ \tt:  \implies  Area \: of \: triangle = \sqrt{1575}  \\  \\  \bf{\tt:  \implies  Area \: of \: triangle =  39.68 \: {cm}^{2} }

_______________________

Similar questions