Math, asked by bharat956064, 2 months ago

the semi perimeter of traingle is 96 cm and its side are in the ratio 3:4:5 find area of traingle​

Answers

Answered by sia1234567
24

 \huge\sf{solution - }

 \huge\bold{\underline \red{given}}

 \bold{ \star \: semi \: perimeter \: of \: a \:  \triangle \:  = 96 \: cm}

  \bold{\star \: ratio \: of \: sides = 3 \ratio \: 4 \ratio \: 5 }

\huge\bold{\underline \red{find}}

 \bold{\bigstar \: area \: of \: a \:  \triangle}

\huge\bold{\underline \purple{steps }}

 \bold{ =  \frac{(a + b + c)}{2}  = 96} \\ \\   =  \frac{(3x + 4x + 5x)}{2} = 96 \\  \\  =  \frac{12x}{2} = 96 \\  \\  = 12x = 96 \times 2 \\  = 12x = 192 \\ \\  x =  \frac{196}{12}    \: \fbox{x \: =  16}

   \underline\bold{\dagger \: on\: putting \: the \: value \: of \: x - } \\  3x = 3 \times 16 = 48 \\ 4x = 4 \times 16 = 64 \\ 5x = 5 \times 16 = 80

 \ddagger \: \sf{now \: we \: know \: the \: sides \: so \: lets \: find \: out \: the \: area}

 \huge\mathfrak{formulae}

  \bigstar \:  \bold{area \: =  \sqrt{s(s - a)(s - b)(s - c)} }

 \star \:  \sf{as \: semi \: perimeter \:  = 96}

   \sf\sqrt{96(96 - 48)(96 - 64)(96 - 80)}

 \sf \sqrt{96 \times 48 \times 32 \times 16}

  \sf\sqrt{2359296}

 \bold{ area} \:  \underline{ \fbox{= 1536}}

________________________________

Answered by vartakpoonam5
2

Answer:

Hi .

Can I get your intro please .

Similar questions