Math, asked by aishgaikwad41, 1 month ago

The semicircle is divided into two sectors whose angles are in the ratio 4:5. find the ratio of theirs areas .

Answers

Answered by mathdude500
8

Given :-

The semicircle is divided into two sectors whose angles are in the ratio 4:5

To Find :-

The ratio of theirs areas

\large\underline{\bold{Solution-}}

\begin{gathered}\begin{gathered}\bf \:Let \:  sector  \: central \:  angle \:  be - \begin{cases} &\sf{4x} \\ &\sf{5x} \end{cases}\end{gathered}\end{gathered}

and

 \bf \: Let  \sf \: radius \: of \: semicircle \:  be  \: r \: units.

We know,

 \bf \: Area_{(sector)} = \dfrac{ \theta}{360 \degree}  \times \pi \:  {r}^{2}

So,

 \bf \: \dfrac{Area_{(sector \: 1)}}{Area_{(sector \: 2)}}  = \sf \:  \dfrac{\dfrac{ 4 \: \cancel{x}}{ \cancel{360 \degree}}  \times \cancel{\pi \:  {r}^{2}}}{\dfrac{ 5 \: \cancel{x}}{\cancel{360 \degree}}  \times\cancel{ \pi \:  {r}^{2}}}

 \bf \: \dfrac{Area_{(sector \: 1)}}{Area_{(sector \: 2)}}  = \sf \: \dfrac{4}{5}

Additional Information :-

 \boxed{ \bf{ \: Area_{(sector)} = \dfrac{ \theta}{360 \degree}  \times \pi \:  {r}^{2}}}

 \boxed{ \bf{Area_{(sector)} = \dfrac{1}{2} lr}}

 \boxed{ \bf{ \: Perimeter_{(sector)} = 2r + l}}

 \boxed{ \bf{ \: Length \: of \: arc_{(sector)} = \dfrac{ \theta}{360 \degree}  \times 2\pi \:  {r}}}

 \boxed{ \bf{ \: Area_{(major - sector)} = \dfrac{ (360 \degree - \theta)}{360 \degree}  \times \pi \:  {r}^{2}}}

Similar questions