The sequence of natural numbers ending in 1or 6 and describe it in two other ways
Answers
Answer:
This may look so big
pls try this one time
Step-by-step explanation:
Let us assume the required sum = S
Therefore, S = 12 + 22 + 32 + 42 + 52 + ................... + n2
Now, we will use the below identity to find the value of S:
n3 - (n - 1)3 = 3n2 - 3n + 1
Substituting, n = 1, 2, 3, 4, 5, ............., n in the above identity, we get
13 - 03 = 3 . 12 - 3 ∙ 1 + 1
23 - 13 = 3 . 22 - 3 ∙ 2 + 1
33 - 23 = 3 . 32 - 3 ∙ 3 + 1
43 - 33 = 3 . 42 - 3 ∙ 4 + 1
......................................
n3 - (n - 1)3 = 3 ∙ n2 - 3 ∙ n + 1
____ _____
Adding we get, n3 - 03 = 3(12 + 22 + 32 + 42 + ........... + n2) - 3(1 + 2 + 3 + 4 + ........ + n) + (1 + 1 + 1 + 1 + ......... n times)
⇒ n3 = 3S - 3 ∙ n(n+1)2 + n
⇒ 3S = n3 + 32n(n + 1) – n = n(n2 - 1) + 32n(n + 1)
⇒ 3S = n(n + 1)(n - 1 + 32)
⇒ 3S = n(n + 1)(2n−2+32)
⇒ 3S = n(n+1)(2n+1)2
Therefore, S = n(n+1)(2n+1)6
i.e., 12 + 22 + 32 + 42 + 52 + ................... + n2 = n(n+1)(2n+1)6
Thus, the sum of the squares of first n natural numbers = n(n+1)(2n+1)6