Math, asked by thomasksunny101, 1 month ago

the sequence of three digit numbers below 500 which leaves remainder 1 when divided by 7.
find the no. of therms in the sequence.
sum of terms in the sequence ​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

The series of three digit natural number less than 500 which leaves remainder 1 when divided by 7 is

\rm :\longmapsto\:106, \: 113, \: 120, -  -  -  - ,498

So,

This sequence of numbers forms Arithmetic Progression with

↝ First term, a = 106

↝ Common difference, d = 113 - 106 = 7

↝ Last term, aₙ = 498

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

  • aₙ is the nᵗʰ term.

  • a is the first term of the sequence.

  • n is the no. of terms.

  • d is the common difference.

Tʜᴜs,

\rm :\longmapsto\:498 = 106 + (n - 1)7

\rm :\longmapsto\:498 - 106 = (n - 1)7

\rm :\longmapsto\:392 = (n - 1)7

\rm :\longmapsto\:56 = (n - 1)

\bf\implies \:n \:  =  \: 57

  • So, number of terms in sequence = 57

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(\:a\:+\:a_n \bigg)}}}}}} \\ \end{gathered}

On substituting the values, we get

\rm :\longmapsto\:S_n \:  =  \: \dfrac{57}{2}(106 + 498)

\rm :\longmapsto\:S_n \:  =  \: \dfrac{57}{2} \times 604

\rm :\longmapsto\:S_n \:  =  \: 57 \times 302

\bf\implies \:S_n = 17214

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Similar questions